Hein - Moeller - Schule SE Energietechnik II

Fachbereich-Grundlagen

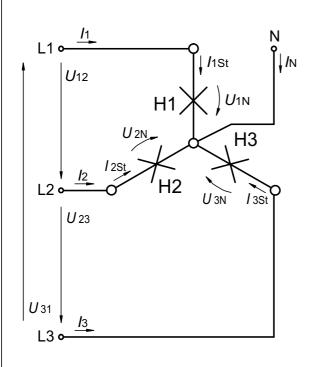
W 5.0

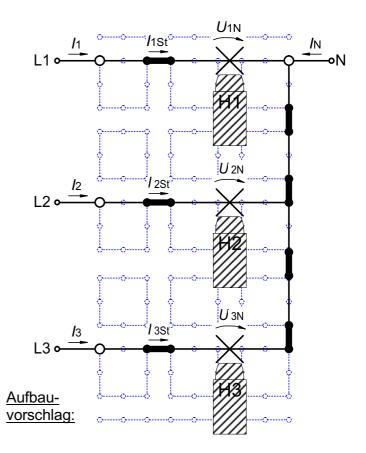
Symmetrische Last im Drehstromsystem

Name:	
Blatt-Nr. 1/2	Klasse:
	Datum:

PROBLEM:

Die Zusammenhänge der im symmetrisch belasteten 3-Phasen-Drehstromsystem auftretenden Spannungen und Ströme, sowie ihre Phasenverschiebung sollen sowohl in Stern-, als auch in Dreieckschaltung untersucht werden.


BAUTEILE UND GERÄTE:


3 x Glühlampe 24V / 5W

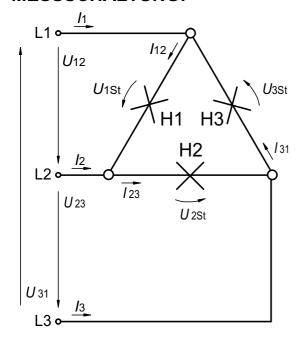
- 1 x Drehstromquelle 12,7V / 22V
- 2 x Vielfachmessgerät (analog + digital)
- 1 x Universalsteckbrett

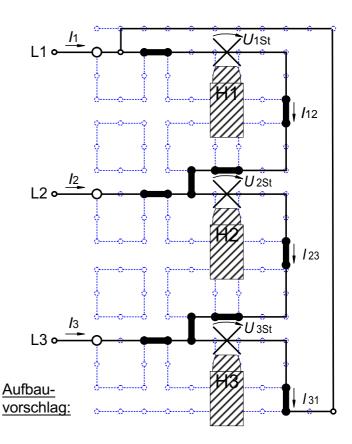
1. Sternschaltung

MESSSCHALTUNG:

MESSWERTE:

<u>Spannungen</u>


Leiter		Strang	
<i>U</i> 12 in V		<i>U</i> 1м in V	
<i>U</i> 23 in V		U ₂N in ∨	
<i>U</i> 31 in V		<i>U</i> зм in V	


Ströme

Leiter		Strang	
I ₁ in mA		Inst in mA	
<i>I</i> ₂ in mA		I2St in mA	
<i>I</i> 3 in mA		/3St in mA	
/ N in mA			

2. Dreieckschaltung

MESSSCHALTUNG:

MESSWERTE:

<u>Spannungen</u>

Leiter		Strang	
<i>U</i> 12 in V		U 1St in ∨	
<i>U</i> 23 in V		<i>U</i> 2St in V	
<i>U</i> 31 in V		U ₃st in V	

Ströme

Leiter		Strang	
/ ₁ in mA		<i>I</i> 12 in mA	
<i>I</i> 2 in mA		<i>I</i> 23 in mA	
/3 in mA		<i>I</i> 31 in mA	

AUSWERTUNG:

- **1.** Vergleichen Sie in beiden Schaltungsvarianten jeweils die drei Messwerte der Leiter- und Strangspannungen und der Leiter- und Strangströme untereinander.
- 2. Ermitteln Sie jeweils den Mittelwert der drei Messwerte und berechnen Sie damit die unten angegebenen Verhältnisse in der Stern- und Dreieckschaltung.

2.1 Sternschaltung

$$\frac{U_{\text{Leiter}}}{U_{\text{Strang}}} = ---- = \approx$$

2.2 Dreieckschaltung

$$\frac{U_{\text{Leiter}}}{U_{\text{Strang}}} = ---------=$$

3. Wie groß müsste in der Sternschaltung der Neutralleiterstrom unter idealen Bedingungen sein ?

Hein-Moeller-Schule **○**SZ Energietechnik II

Fachbereich-Grundlagen

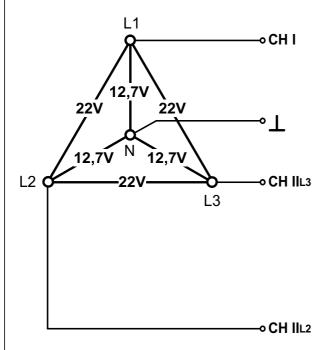
W 5.0

Symmetrische Last im Drehstromsystem

Name:	
Blatt-Nr. 2/2	Klasse:
	Datum:

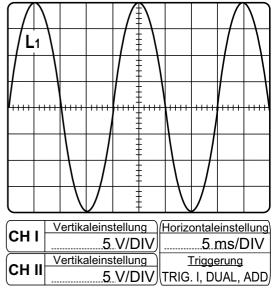
3. Darstellung der Dreiphasenwechselspannung mit dem Oszilloskop

BAUTEILE UND GERÄTE:


2 x BNC-Adapter

1 x Drehstromquelle 12,7V / 22V

MESSANORDNUNG:


Messschaltung:

Die Außenleiterspannungen werden direkt an der Drehstromquelle gemessen.

Oszilloskopische Darstellung:

- 1. Über CH I wird die Außenleiterspannung L1 ständig als Bezugsgröße abgebildet (bereits eingezeichnet).
- 2. Über CH II wird zuerst die Außenleiterspannung L2 abgebildet und in das Schaubild eingezeichnet. Danach wird ebenso mit der Außenleiterspannung L3 verfahren.

AUSWERTUNG:

L1 zu L2, L2 zu L3 und L3 zu L1.

Vorgehensweise:

- 1. Ermitteln Sie die Anzahl der Bildschirmteilungen (Kästchen) für eine Periode.
- **2.** Lesen Sie den Abstand φ' in Bildschirmteilungen zwischen zwei Außenleiterschwingungen ab.
- 3. Setzen Sie die ermittelten Werte jeweils in die angegebene Formel ein.

$$\varphi = 360^{\circ} \cdot \frac{\varphi' \text{[Teilungen]}}{\text{Teilungen pro}}$$