Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

W 4.6

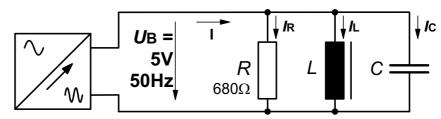
RLC - Parallelschaltung Phasenverschiebung

Name:	
Blatt-Nr.	Klasse:
	Datum:

PROBLEM:

Die Phasenverschiebung zwischen der Betriebsspannung und dem Strom an einer Parallelschaltung von Widerstand, Spule und Kondensator soll in zwei Schritten untersucht werden.

- **1.** Messung und Vergleich von zwei unterschiedlich dimensionierten Messschaltungen zur Bestimmung der Phasenverschiebung.
- 2. Kontrolle der ermittelten Winkel der Phasenverschiebungen mit dem Oszilloskop.


BAUTEILE UND GERÄTE:

- 1 x Widerstand 10Ω
- 1 x Widerstand 680Ω
- 1 x Leuchtstofflampenvorschaltgerät 18W
- 1 x Kondensator 2,2µF
- 1 x Kondensator 10µF
- 2 x BNC-Adapter

- 1 x Funktionsgenerator
- 2 x Vielfachmessinstrument (analog+digital)
- 1 x Oszilloskop
- 1 x Universalsteckbrett

1. MESSUNG UND VERGLEICH DER PHASENWINKEL

MESSSCHALTUNG:

MESSWERTE:

einstellen und nachmessen		
<i>U</i> в in V		
5 (50 Hz)		

Schaltung 1

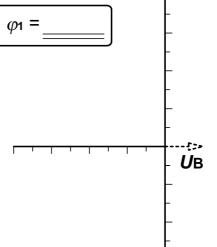
messen (<i>C</i> 1 = 2,2μF)				
<i>I</i> R in mA	<i>I</i> ∟ in mA	<i>I</i> c in mA		

Schaltung 2

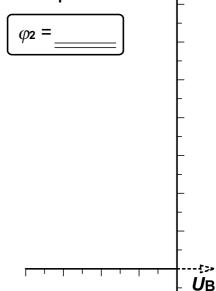
messen (<i>C</i> 2 = 10μF)				
<i>I</i> R in mA	<i>I</i> ∟ in mA	<i>I</i> c in mA		

AUSWERTUNG:

1. Zeigerdiagramme


Zeichnen Sie die Zeigerdiagramme für die Ströme an den Parallelschaltungen. (Zuerst *IR* und *Ic*.)

Die Phasenlage von *I*R entspricht der Phasenlage des Spannung *UB*.


Maßstab: 1cm [≜] 2mA

Kennzeichnen Sie den Phasenverschiebungswinkel φ und messen Sie ihn mit einem Winkelmesser nach.

$C_2 = 10 \mu F$

2. Berechnung der Phasenwinkel

$$\tan \varphi = \frac{IC - IL}{IR}$$

 $\tan \varphi_1 = -$

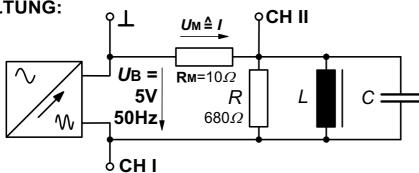
 $\tan \varphi_2 = -$

tan φ_2 =

3. Vergleich der Phasenwinkel

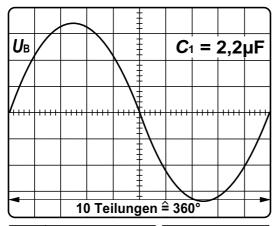
Bitte kreuzen Sie an:

Schaltung 2

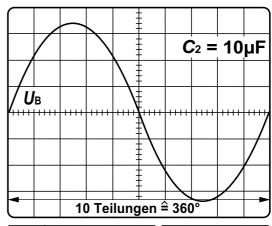

Blindstromvergleich:
$$Ic > IL$$

Phasenverschiebung vorauseilend von *I* gegenüber *U*B:

Belastungsart:


2. KONTROLLE DER PHASENWINKEL MIT DEM OSZILLOSKOP

MESSSCHALTUNG:



MESSWERTE:

Zeichnen Sie den Verlauf des Stromes / maßstäblich in das jeweilige Diagramm.

	Vertikaleinstellung	Horizontaleinstellung
CHI	2.V/DIV	2.ms/DIV
	Vertikaleinstellung	Triggerung:
CH II	50 mV/DIV	TRIG. I, DUAL, CHOP.,

AUSWERTUNG:

Setzen Sie den Abstand der Sinuskurven auf der Zeitachse für *ϕ* ein.

$$\mathcal{Q}$$
1 = 360° · $\frac{}{10}$

$$\varphi$$
° = 360°· $\frac{\varphi$ [Teilungen] 10 [Teilungen]