Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

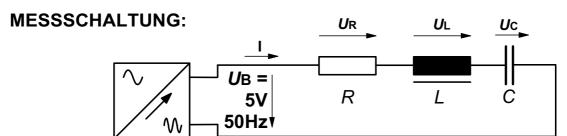
W 4.1

RLC - Reihenschaltung Phasenverschiebung

Name:	
Blatt-Nr.	Klasse:
1/1	Datum:

PROBLEM:

Die Phasenverschiebung zwischen der Betriebsspannung und dem Strom an einer Reihenschaltung von Widerstand, Spule und Kondensator soll in zwei Schritten untersucht werden.


- **1.** Messung und Vergleich von zwei unterschiedlich dimensionierten Messschaltungen zur Bestimmung der Phasenverschiebung.
- 2. Kontrolle der ermittelten Winkel der Phasenverschiebungen mit dem Oszilloskop.

BAUTEILE UND GERÄTE:

- 1 x Widerstand 680Ω
- 1 x Leuchtstofflampenvorschaltgerät
- 1 x Kondensator 2,2µF
- 1 x Kondensator 47µF
- 2 x BNC-Adapter

- 1 x Funktionsgenerator
- 2 x Vielfachmessinstrument (analog+digital)
- 1 x Oszilloskop
- 1 x Universalsteckbrett

1. MESSUNG UND VERGLEICH DER PHASENWINKEL

MESSWERTE:

einstellen und	
nachmessen	
U B in ∨	
5 (50 Hz)	-

Schaltung 1

messen (<i>C</i> 1 = 2,2μF)			
U R in ∨	<i>U</i> ∟ in V	<i>U</i> c in V	

Schaltung 2

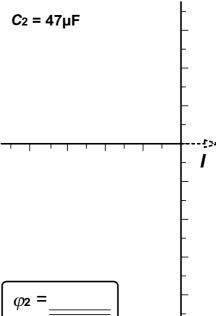
messen (<i>C</i> 2 = 47μF)			
<i>U</i> R in ∨	<i>U</i> ∟ in V	<i>U</i> c in ∨	

AUSWERTUNG:

1. Zeigerdiagramme

Zeichnen Sie die Zeigerdiagramme für die Spannungen an den Reihenschaltungen.

(Zuerst UR und UL.)


Die Phasenlage von *U*R entspricht der Phasenlage des Stromes *I*.

Maßstab: 1cm [≜] 1V

Kennzeichnen Sie den Phasenverschiebungswinkel φ und messen Sie ihn mit einem Winkelmesser nach.

2. Berechnung der Phasenwinkel

$$\tan \varphi = \frac{U L - U C}{U R}$$

$$\tan \varphi_1 = ----$$

tan
$$\varphi_2$$
 =

3. Vergleich der Phasenwinkel

Bitte kreuzen Sie an:

Schaltung 1

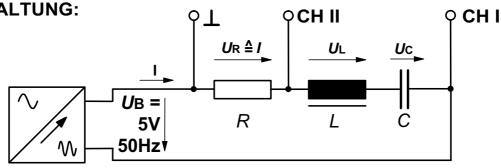
Schaltung 2

$$U_L > U_C$$

 $U_L < U_C$

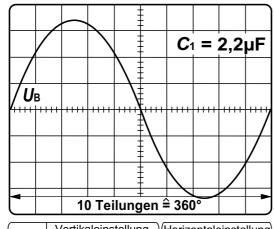
Phasenverschiebung vorauseilend von *U*B gegenüber *I*:

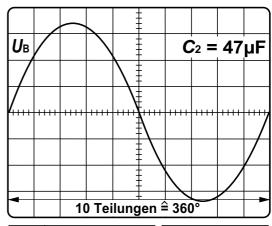
nacheilend



kapazitiv Belastungsart:

induktiv


2. KONTROLLE DER PHASENWINKEL MIT DEM OSZILLOSKOP



MESSWERTE:

Zeichnen Sie den Verlauf des Stromes / maßstäblich in das jeweilige Diagramm.

СНІ	Vertikaleinstellung	Horizontaleinstellung
	2.V/DIV	2 ms/DIV
CH II	Vertikaleinstellung	Triggerung:
	2 \/\DI\/	TRIG I DUAL CHOP

	Vertikaleinstellung	Horizontaleinstellung
CHI	2.V/DIV	2.ms/DIV
CH II	Vertikaleinstellung	Triggerung:
	2_V/DIV	TRIG. I, DUAL, CHOP.

AUSWERTUNG:

Setzen Sie den Abstand der Sinuskurven auf der Zeitachse für φ ein.

$$\varphi^{\circ} = 360^{\circ} \cdot \frac{\varphi \text{ [Teilungen]}}{10 \text{ [Teilungen]}}$$