Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

W 3.3

Der kapazitive Blindwiderstand in Abhängigkeit von f und C

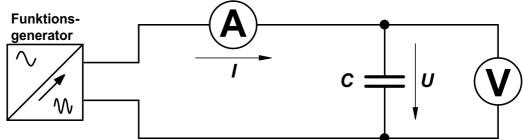
Name:	
Blatt-Nr. 1/1	Klasse:
	Datum:

PROBLEM:

Die Ursachen für die Größe des kapazitiven Blindwiderstandes sollen mit zwei Messreihen untersucht werden:

- **1.** Ein Kondensator wird an eine Wechselspannung mit unterschiedlichen Frequenzen gelegt und und die Stromstärke gemessen. Anschließend wird der kapazitive Blindwiderstand berechnet.
- 2. Kondensatoren mit verschiedener Kapazität werden an eine Wechselspannung mit gleichbleibender Frequenz gelegt und die Stromstärke gemessen. Abschließend wird mit Hilfe des ohmschen Gesetzes der kapazitive Blindwiderstand berechnet.

Hinweis:


Da bei den verwendeten Kondensatoren der Wirkwiderstand sehr klein ist, wird im Versuch von idealen Kondensatoren ausgegangen.

BAUTEILE UND GERÄTE:

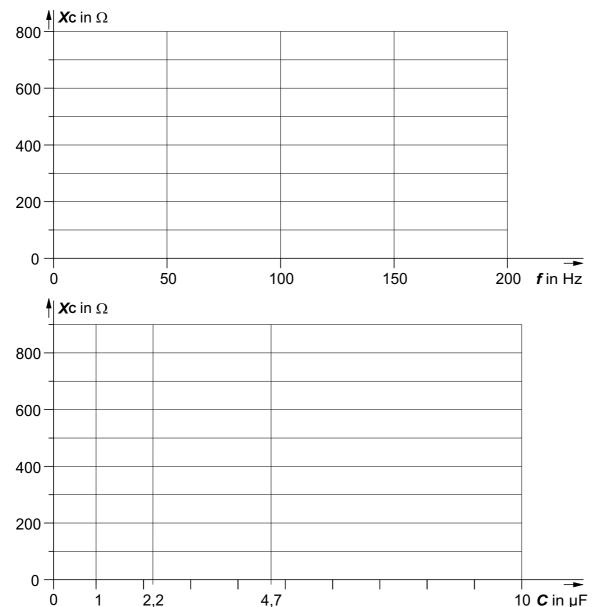
- 1 x Kondensator 1µF
- 1 x Kondensator 2,2µF
- 1 x Kondensator 4.7µF
- 1 x Kondensator 10µF

- 1 x Funktionsgenerator
- 2 x Vielfachmessinstrument (analog+digital)
- 1 x Universalsteckbrett

MESSSCHALTUNG:

MESSWERTE:

1. Xc = f(f), mit dem Kondensator $C = 4.7\mu$ F für alle einzustellenden Frequenzen:


einstellen	f in Hz	50	100	150	200
	U in V	2	2	2	2
messen	<i>I</i> in mA				
rechnen	$Z \stackrel{!}{=} Xc = \frac{U}{I} \text{ in } \Omega$				

2. $X_C = f(C)$, mit der Frequenz f = 200 Hz für alle einzusetzenden Kondensatoren:

nacheinander einbauen	C in μF	1	2,2	4,7	10
einstellen	U in V	2	2	2	2
messen	<i>I</i> in mA				
rechnen	$Z = Xc = \frac{U}{I}$ in Ω				

AUSWERTUNG:

1. Zeichnen Sie die Kennlinien Xc = f(f) und Xc = f(C) in die vorbereiteten Diagramme.

2. Wie ändert sich der kapazitive Blindwiderstand Xc in Abhängigkeit von der Frequenz und der Kapazität ?

Es gilt also die Proportion:

Xc ~ ,

Diese Beziehung kann noch nicht als Gleichung geschrieben werden, da bei einer Kontrollrechnung zwar die Einheiten, aber nicht die Zahlenwerte stimmen. Die Proportion wird deshalb um den konstanten Faktor $\frac{1}{2\pi}$ ergänzt, so daß sich die folgende Gleichung ergibt :

ZUSATZAUFGABE:

Überprüfen Sie mit der gefundenen Formel Ihre auf der Seite 1 ermittelten Werte für den kapazitiven Blindwiderstand $X_{\mathbb{C}}$.