Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

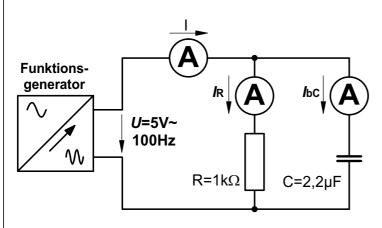
W 3.2

RC - Parallelschaltung Phasenverschiebung

Name:

Blatt-Nr. Klasse:
Datum:

PROBLEM:


Bestimmung und Darstellung des Phasenverschiebungswinkel φ einer RC - Parallelschaltung.

BAUTEILE UND GERÄTE:

- 1 x Kondensator 2,2µF
- 1 x Widerstand 1kΩ
- 1 x Widerstand 10Ω
- 2 x BNC-Adapter

- 1 x Funktionsgenerator
- 2 x Vielfachmessinstrument (analog+digital)
- 1 x Oszilloskop
- 1 x Universalsteckbrett

MESSSCHALTUNG I:

MESSWERTE:

Betriebsspannung: $U = 5V^{\circ}$; f = 100Hz

<i>I</i> R in mA	
I ₀c in mA	
<i>I</i> in mA	

AUSWERTUNG:

1. Zeichnerische Bestimmung

Zeichnen Sie die gemessenen Stromwerte IR und Ibc entsprechend dem angegebenen Maßstab in das vorbereitete Diagramm des Stromdreiecks ein.

Ergänzen Sie den Zeiger für den Summenstrom *I*.

Kennzeichnen Sie den Phasenverschiebungswinkel φ und messen Sie ihn mit einem Winkelmesser nach.

Stromdreieck

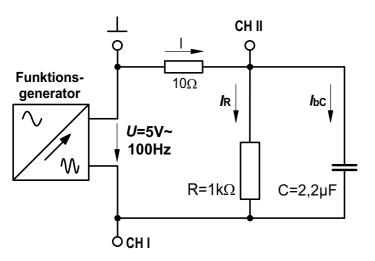
Maßstab: 1cm [≙] 1mA

φ = _____

*I*R .

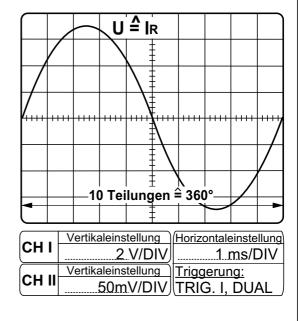
2. Rechnerische Bestimmung

$$\tan \varphi = \frac{I_{bC}}{I_{R}}$$


$$\tan \varphi = ----= =$$

/bC

MESSSCHALTUNG II:


Die Phasenverschiebung φ wird direkt mit Hilfe des Zweistrahloszilloskops dargestellt.

Die Betriebsspannung U (entspricht der Phasenlage von IR) liegt an Kanal I (CH I) und der Gesamtstrom I wird mit Hilfe eines Messwiderstandes von 10Ω über Kanal II (CH II) abgebildet.

MESSWERTE:

Zeichnen Sie den Verlauf des Gesamtstromes / maßstäblich in das Diagramm.

AUSWERTUNG:

Oszilloskopische Bestimmung

Der Phasenverschiebungswinkel φ entspricht dem Abstand der beiden Sinuskurven.

Die Phasenverschiebung beträgt _____ Teilungen.

$$\frac{\varphi^{\circ}}{360^{\circ}} = \frac{\varphi \text{ [Teilungen]}}{10 \text{ [Teilungen]}}$$

$$\varphi^{\circ} = 360^{\circ} \cdot \frac{\varphi \text{ [Teilungen]}}{10 \text{ [Teilungen]}} \qquad \varphi^{\circ} = 360^{\circ} \cdot ----$$

$$\varphi_{\text{f100}}$$
 = _____

ZUSATZAUFGABE:

Verstellen Sie die Frequenz der Betriebsspannung von 100Hz auf 200Hz. Bestimmen Sie bei dieser Frequenz den Winkel der Phasenverschiebung.

$$\varphi_{f200} = \underline{\qquad}$$

Wie groß wäre der Winkel der Phasenverschiebung bei einer unendlich hohen Frequenz ?

$$\varphi_{f\infty}$$
 = _______