Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

W 2.4

Reihen- und Parallelschaltung von Spulen

Name:	
Blatt-Nr. 1/1	Klasse:
	Datum:

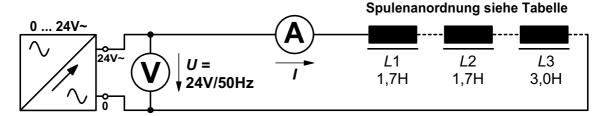
PROBLEM:

Aus vorhandenen Spulen mit unterschiedlichen Werten soll durch Zusammenschalten ein bestimmter, neuer Wert erstellt werden.

Der Lösungsweg gliedert sich in zwei Bearbeitungsschritte:

- 1. Messtechnische Herleitung der Gesetze zur Reihen- und Parallelschaltung von Spulen.
- 2. Erstellung eines neuen Spulenwertes aus den vorhandenen Spulen mit Hilfe der ermittelten Gesetze.

Hinweis:


Der Messfehler durch den Wirkwiderstand der Spulen wird im folgenden Versuch vernachlässigt. ($X_L \stackrel{!}{=} Z$)

BAUTEILE UND GERÄTE:

- 2 x Leuchtstofflampenvorschaltgerät (1,7H)
- 1 x Spule 1250Wdg. mit geschlossenem Eisenkern (**3,0H**)
- 1 x Wechselspannungsquelle 0...24V/50Hz
- 2 x Vielfachmessinstrumente (analog+digital)

1. Messtechnische Herleitung zur Gesetzmäßigkeit bei Reihenschaltung

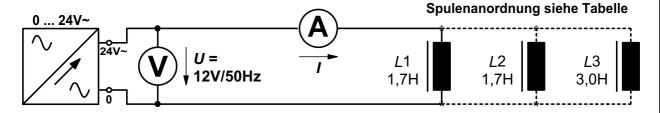
MESSSCHALTUNG I:

MESSWERTE:

In Reihe geschaltete Spulen		L1, L2, L3	<i>L</i> 1, <i>L</i> 2	<i>L</i> 1
einstellen und nachmessen	<i>U</i> in V; (<i>f</i> = 50Hz)	24	24	24
messen	<i>I</i> in mA			
rechnen	$Z \stackrel{!}{=} X_L = \frac{U}{I} \text{ in } \Omega$			
	$L = \frac{XL}{2\pi \cdot f} \text{ in H}$			

ERKENNTNIS:

In der Reihenschaltung von Spulen ist die Gesamtinduktivität gleich der Einzelinduktivitäten.


Als Formel ausgedrückt:

Kontrollrechnung mit Nennwerten für L1, L2 u. L3:

L _{ges} =			

1.1 Messtechnische Herleitung zur Gesetzmäßigkeit bei Parallelschaltung

MESSSCHALTUNG II:

MESSWERTE:

Parallelgeschaltete Spulen		L1//L2//L3	L1//L2	<i>L</i> 1
einstellen und nachmessen	<i>U</i> in V; (<i>f</i> = 50Hz)	12	12	12
messen	<i>I</i> in mA			
rechnen	$Z \stackrel{!}{=} X_L = \frac{U}{I} \text{ in } \Omega$			
	$L = \frac{X_L}{2\pi \cdot f} \text{ in H}$			

ERKENNTNIS:

In der Parallelschaltung von Spulen ist die Gesamtinduktivität ______, als die Induktivität jeder einzelnen Spule.

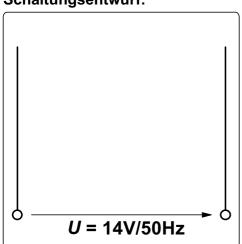
Die Berechnung der Gesamtinduktivität erfolgt nach folgender Formel:

Kontrollrechnung mit Nennwerten für L1//L2//L3:

$$\frac{1}{L \text{ges}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_n}$$

$$\frac{1}{L \text{ges}} =$$

$$L \text{ges} =$$


2. Zusammenstellung einer Spule von 3,85 H

Arbeitsauftrag:

Entwerfen Sie mit Hilfe der gefundenen Gesetzmäßigkeiten eine gemischte Spulenschaltung mit einer **Gesamtinduktivität von 3,85 H**.

Zur Verfügung stehen 2 x 1,7H und 1 x 3,0H Spulen.

Schaltungsentwurf:

Berechnung mit Nennwerten:

Kontrollbestimmung über eine U-I-Messung: