Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

W 2.3

Der induktive Blindwiderstand in Abhängigkeit von f und L

Name:	
Blatt-Nr.	Klasse:
	Datum

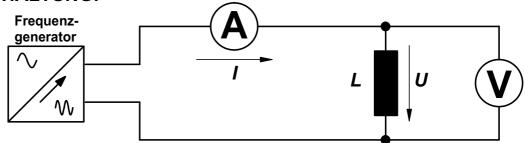
PROBLEM:

Die Ursachen für die Größe des induktiven Blindwiderstandes sollen mit zwei Messreihen untersucht werden:

- **1.** Eine Spule wird an eine Wechselspannung mit unterschiedlichen Frequenzen angeschlossen und die Stromstärke gemessen. Danach wird der induktive Blindwiderstand berechnet.
- 2. Spulen mit verschiedener Induktivität werden an eine Wechselspannung mit gleichbleibender Frequenz angeschlossen und die Stromstärke gemessen. Anschließend wird mit Hilfe des ohmschen Gesetzes der induktive Blindwiderstand berechnet.

Hinweis:

Der Gleichstromwiderstand (Drahtwiderstand) ist bei den angegebenen Frequenzen sehr klein gegenüber dem induktiven Blindwiderstand und wird deshalb vernachlässigt.


BAUTEILE UND GERÄTE:

- 1 x Spule 500 Wdg./ 6 mH
- 1 x Spule 1000 Wdg./ 24 mH
- 1 x Spule 1250 Wdg./ **36 mH**
- 1 x Spule 1500 Wdg./ **60 mH**(Mittelanzapfung von 3000Wdg.)

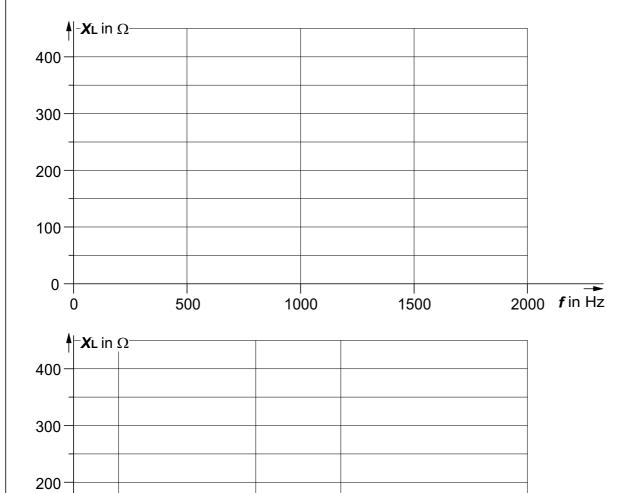
ohne Eisenkern

- 1 x Funktionsgenerator
- 2 x Vielfachmessinstrument (analog+digital)

MESSSCHALTUNG:

MESSWERTE:

1. $X_L = f(f)$, mit der Spule L = 24 mH für alle einzustellenden Frequenzen:


einstellen	f in Hz	500	1000	1500	2000
	U in V	1	1	1	1
messen	<i>I</i> in mA				
rechnen	$Z \stackrel{!}{=} XL = \frac{U}{I}$ in Ω				

2. $X_L = f(L)$, mit der Frequenz f = 1000 Hz für alle einzusetzenden Spulen:

nacheinander einbauen	<i>L</i> in mH	6	24	36	60
einstellen	U in V	1	1	1	1
messen	<i>I</i> in mA				
rechnen	$Z \stackrel{!}{=} X_L = \frac{U}{I}$ in Ω				

AUSWERTUNG:

1. Zeichnen Sie die Kennlinien $X_L = f(f)$ und $X_L = f(L)$ in die vorbereiteten Diagramme.

2. Wie ändert sich der induktive Blindwiderstand X∟ in Abhängigkeit von der Frequenz und der Induktivität ?

24

36

60 *L* in mH

Es gilt also die Proportion:

Diese Beziehung kann noch nicht als Gleichung geschrieben werden, da bei einer Kontrollrechnung zwar die Einheiten, aber nicht die Zahlenwerte stimmen. Die Proportion wird deshalb um den konstanten Faktor 2π ergänzt, so daß sich die folgende Gleichung ergibt :

ZUSATZAUFGABE:

100

Überprüfen Sie mit der gefundenen Formel Ihre auf der Seite 1 ermittelten Werte für den induktiven Blindwiderstand XL.