Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

W 2.1

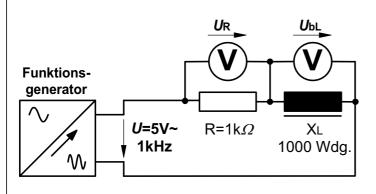
RL - Reihenschaltung **Phasenverschiebung**

Name:	
Blatt-Nr. 1/1	Klasse:
	Datum:

PROBLEM:

Bestimmung und Darstellung des Phasenverschiebungswinkel @einer RL - Reihenschaltung.

Hinweis: Der Gleichstromwiderstand (Drahtwiderstand) ist bei der angegebenen Frequenz sehr klein gegenüber dem induktiven Blindwiderstand und wird deshalb vernachlässigt.


BAUTEILE UND GERÄTE:

- 1 x Spule 1000 Wdg. mit durchgestecktem Eisenjoch
- 1 x Widerstand 1kΩ
- 2 x BNC-Adapter

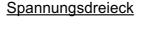
- 1 x Funktionsgenerator
- 2 x Vielfachmessinstrument (analog+digital)
- 1 x Oszilloskop
- 1 x Universalsteckbrett

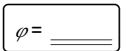
MESSSCHALTUNG I:

MESSWERTE:

Betriebsspannung: $U = 5V \sim$; f = 1kHz

U R in ∨	
$\emph{\textbf{U}}_{bL}$ in V	


AUSWERTUNG:


1. Zeichnerische Bestimmung

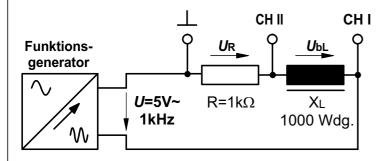
Zeichnen Sie die beiden gemessenen Spannungswerte entsprechend dem angegebenen Maßstab in das vorbereitete Diagramm des Spannungsdreiecks ein.

Ergänzen Sie den Zeiger für die Summenspannung.

Kennzeichnen Sie den Phasenverschiebungswinkel Ø und messen Sie ihn mit einem Winkelmesser nach.

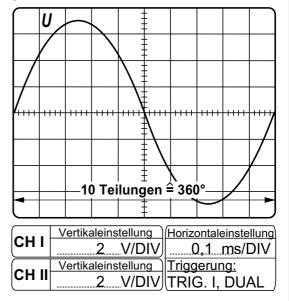
 $U_{\rm bL}$ Maßstab: 1cm ≜ 0,5V U_{R}

2. Rechnerische Bestimmung


$$\tan \varphi = \frac{U_{\text{bL}}}{U_{\text{R}}}$$

tan
$$\varphi$$
 = -----= =

MESSSCHALTUNG II:


Die Phasenverschiebung φ wird direkt mit Hilfe des Zweistrahloszilloskops dargestellt.

Die Betriebsspannung *U* liegt an Kanal I (CH I) und die Spannung *U*R an Kanal II (CH II).

MESSWERTE:

Zeichnen Sie den Verlauf der Wechselspannung U_R maßstäblich in das Diagramm.

AUSWERTUNG:

Oszilloskopische Bestimmung

Der Phasenverschiebungswinkel φ entspricht dem Abstand der beiden Sinuskurven.

Die Phasenverschiebung beträgt _____ Teilungen.

$$\frac{\varphi^{\circ}}{360^{\circ}} = \frac{\varphi \text{ [Teilungen]}}{10 \text{ [Teilungen]}}$$

$$\varphi^{\circ} = 360^{\circ} \cdot \frac{\varphi \text{ [Teilungen]}}{10 \text{ [Teilungen]}} \qquad \varphi^{\circ} = 360^{\circ} \cdot ----$$

ZUSATZAUFGABE:

Verstellen Sie die Frequenz der Betriebsspannung von 1kHz auf 2kHz. Bestimmen Sie bei dieser Frequenz den Winkel der Phasenverschiebung.

$$\varphi_{f2k} = \underline{\hspace{1cm}}$$

Wie groß wäre der Winkel der Phasenverschiebung bei einer unendlich hohen Frequenz ?