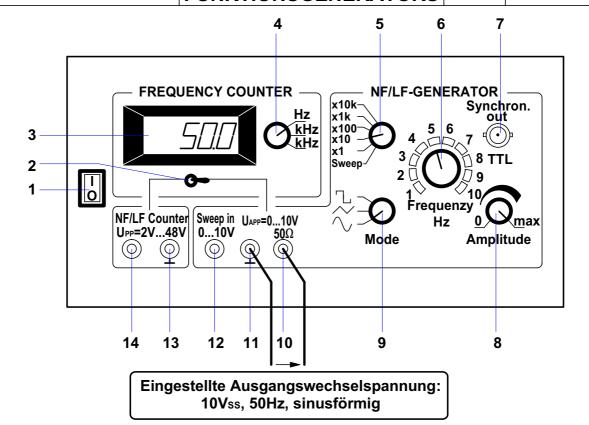
Hein - Moeller - Schule SE Energietechnik II

3


Fachbereich-Grundlagen

W 1.1

Bedienung des FUNKTIONSGENERATORS

Name:
Blatt-Nr. Klasse:

/2 Datum:

BENENNUNGEN UND TECHNISCHE DATEN:

- 1 Netzschalter
- 2 Umschalter für die Digital-Frequenzanzeige zwischen Counter(Frequenzzähler) und Generator
- 3 Digital-Frequenzanzeige (4 1/2 stellig mit Überlaufanzeige "←")
- 4 Wahlschalter des Frequenzmessbereichs
- 5 Wahlschalter des Frequenzbereichs 1Hz ... 100kHz in 5 Dekaden
- 6 Frequenzeinsteller
- 7 TTL-Signalausgang
- 8 Amplitudeneinsteller 0 ...10Vss

- **9** Wahlschalter der Signalform zwischen Rechteck-,Dreieck- und Sinussignal
- **10** Ausgangssignalbuchse 0 ...10Vss an 50Ω
- 11 Massebuchse (Generator)
- 12 Eingangsbuchse für Wobbelsägesignal 0 ...+10V (Wobbelhub max. 10Hz ...100kHz in 4 Dekaden logarithmisch)
- 13 Massebuchse (Frequenzzähler)
- **14** Eingangsbuchse für externe Frequenzmessung; Eingangssignal: 2Vss ... 48Vss

INBETRIEBNAHME DES GENERATORTEILS:

- 1. Netzschalter einschalten.
- 2. Umschalter der Digital-Frequenzanzeige in Richtung Generatorteil schalten.
- 3. Signalform und Frequenzbereich mittels Wahlschalter wählen.
- 4. Frequenz anhand der Frequenzanzeige einstellen (eventuell Frequenzmessbereich ändern; bei Überlauf erscheint links oben ein kleiner Pfeil in der Digitalanzeige).
- 5. Mittels Messgerät oder Oszilloskop die Höhe der Signalspannung einstellen.
- (6. Für Wobbelbetrieb den Wahlschalter des Frequenzbereiches auf "sweep" stellen und über die "sweep in"-Buchse den gewünschten Wobbelsägezahn einspeisen.)

EINSTELLÜBUNG FÜR DEN GENERATORTEIL:

Einstellungen am Generator:

1. Umschalter der Digital-Frequenzanzeige: Generator

2. Wahlschalter des Frequenzmessbereichs: untere kHz-Einstellung

3. Wahlschalter der Signalform: Sinussignal

4. Wahlschalter des Frequenzbereichs: x1k

5. Frequenzeinsteller: ca. 3,5Hz

Stellen Sie zeilenweise die folgenden Einstellungen her, übertragen Sie jeweils den angezeigten Frequenzwert in das vorbereitete Anzeigenbild und geben Sie die abgelesene Frequenz an :

Wahlschalter des Frequenz- messbereichs	Wahlschalter des Frequenz- bereichs	Frequenz- einsteller in Hz	Anzeigenbild	abgelesene Frequenz in Hz oder kHz
kHz Mitte	x1k	ca. 3,5		
Hz	x1k	ca. 3,5		
Hz	x100	ca. 3,5		
Hz	x10	ca. 3,5		
Hz	x1	ca. 3,5		

Tragen Sie nachfolgend anhand der vorgegebenen Frequenzangabe die **genaueste Anzeigemöglichkeit** in das Anzeigenbild und ermitteln Sie dann die zugehörigen Einstellungen des Generators:

		60Hz
		6kHz
		60kHz

Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

W 1.1

Frequenzbestimmung mit dem Oszilloskop

Name:	
Blatt-Nr.	Klasse:
2/2	Datum:

ARBEITSAUFTRAG 1:

Überprüfung der Frequenz einer sinusförmigen Wechselspannung mit dem Oszilloskop.

- **1.** Stellen Sie am Funktionsgenerator mit Hilfe des Oszilloskops (CH I) eine sinusförmige Wechselspannung von 7 Vss mit einer Frequenz von 5 kHz ein.
- **2.** Wählen Sie die angegebenen Oszilloskopeinstellungen. (Achtung: Der aufgesetzte, kleine Einstellknopf des Zeitablenkungswahlschalters muß vorsichtg rechts eingerastet sein.)

MESSUNG:

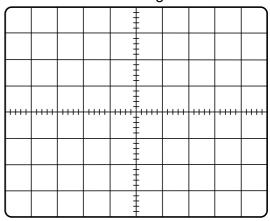
Kennzeichnen Sie in ihrer nebenstehenden Darstellung die Periodenlänge T der Wechselspannung.

Geben Sie die Periodenlänge *T* mit der Anzahl der (Kästchen-)Teilungen an:

Anzahl der Teilungen =

Multiplizieren Sie die Anzahl der Teilungen mit der gewählten Horizontaleinstellung:

$$T =$$
 Teilungen x $\mu s/DIV^*$


$$T = \mu s$$

Berechnung der Frequenz f:

$$\boxed{f = \frac{1}{T}} \qquad f = ---- = \underline{\qquad}$$

BILDSCHIRMDARSTELLUNG:

Zeichnen Sie die Wechselspannung maßstäblich in das Diagramm.

	Vertikaleinstellung		(Horizontaleinstellung	
CHI	1	V/DIV	20	μs/DIV
			Triggeru	ng:
			ITRIC I	

ARBEITSAUFTRAG 2:

Überprüfung der Frequenz einer dreieckförmigen Wechselspannung mit dem Oszilloskop.

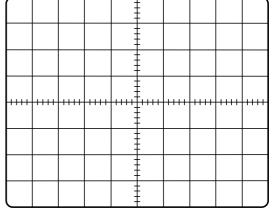
- 1. Stellen Sie am Funktionsgenerator mit Hilfe des Oszilloskops (CH I) eine dreieckförmige Wechselspannung von 3 Vss mit einer Frequenz von 300 Hz ein.
- 2. Bestimmen Sie wie in Arbeitsauftrag 1 die Frequenz mit dem Oszilloskop.

MESSUNG:

Bestimmung der Periodenlänge T:

Anzahl der Teilungen =

T = Teilungen x ms/DIV*


T = ____ ms

Berechnung der Frequenz f:

$$f = \frac{1}{T}$$
 $f = -----= = ------=$

BILDSCHIRMDARSTELLUNG:

Tragen Sie die Wechselspannung mit den dazugehörigen Einstellungen ein.

	Vertikaleinstellung	Horizontaleinstellung	
CHI	V/DIV	s/DIV	
		Triggerung:	
		TRIG. I	

* Division (engl.) = Teilung

ARBEITSAUFTRAG 3:

Überprüfung der Netzfrequenz mit dem Oszilloskop.

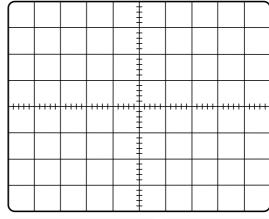
- 1. Stellen Sie mit Hilfe des Oszilloskops an der Wechselspannungsquelle 0 ... 12V~ eine Spannung von 12 Vss ein.
- 2. Bestimmen Sie wie in Arbeitsauftrag 1 die Frequenz mit dem Oszilloskop.

MESSUNG:

Bestimmung der Periodenlänge *T*:

Anzahl der Teilungen =

T = Teilungen x s/DIV


T = s

Berechnung der Frequenz f:

$$f = \frac{1}{T}$$

BILDSCHIRMDARSTELLUNG:

Tragen Sie die Wechselspannung mit den dazugehörigen Einstellungen ein.

CHI	Vertikaleinstellung	Horizontaleinstellung
	V/DIV	s/DIV
		Triggerung:
		TRIG. I

ARBEITSAUFTRAG 4:

Bestimmung der Calibratorfrequenz des Oszilloskops.

- 1. Halten Sie für die Messung den Bananenstecker der Messleitung von CH I an den Calibrierausgang des Oszilloskops (Ausgangsöse unterhalb des Bildschirms, 2 V-Ausgang).
- 2. Bestimmen Sie wie in Arbeitsauftrag 1 die Frequenz mit dem Oszilloskop.

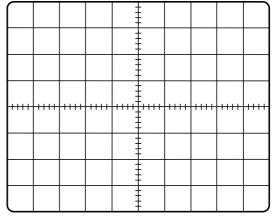
MESSUNG:

Bestimmung der Periodenlänge T:

Anzahl der Teilungen =

T = Teilungen x s/DIV

T = ____s


Berechnung der Frequenz *f*:

$$f = \frac{1}{T}$$

$$f = \frac{1}{T} \left| f = \frac{1}{T} \right|$$

BILDSCHIRMDARSTELLUNG:

Tragen Sie die Wechselspannung mit den dazugehörigen Einstellungen ein.

