Hein - Moeller - Schule

○S**Z** Energietechnik II

Fachbereich-Grundlagen

M 3.1

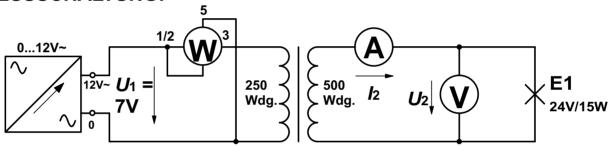
Belasteter Transformator Leistungsverluste bei Wirklast

	Name:		
	Blatt-Nr.	Klasse:	
4	1/1	Datum:	

PROBLEM:

Ein Transformator erwärmt sich, wenn die Sekundärwicklung belastet wird. Der hierdurch entstehende Leistungsverlust soll auf zwei unterschiedene Arten ermittelt und verglichen werden:

- 1. Leistungsverlustermittlung als Differenz von zugeführter und abgegebener Leistung.
- 2. Leistungsverlustermittlung durch Bestimmung der Kupfer- und Eisenverluste.


BAUTEILE UND GERÄTE:

- 1 x Trafoeisenkern mit Joch
- 1 x Spule 250 Wdg. (primär)
- 1 x Spule 500 Wdg. (sekundär)
- 1 x Glühlampe 24V/15W

- 1 x Wechselspannungsquelle 0 ... 12V
- 2 x Vielfachmessinstrument (analog+digital)
- 1 x Leistungsmessgerät + Anschlussleitung
- 1 x Universalsteckbrett

1. Leistungsverlustermittlung als Differenz von zugeführter und abgegebener Leistung

MESSSCHALTUNG:

MESSWERTE:

einstellen und nachmessen	<i>U</i> 1 in V	7,0
	P zu in W	
messen	<i>I</i> 2 in A	
	<i>U</i> 2 in V	

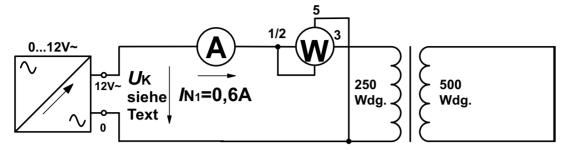
AUSWERTUNG:

1. Berechnung der abgegebenen Leistung:

$$P_{ab} = U_2 \cdot I_2$$
 $P_{ab} =$

2. Leistungsverlustbestimmung:

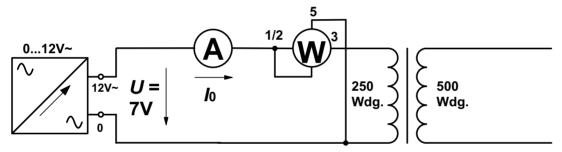
$$P_V = P_{zu} - P_{ab}$$
 $P_V =$


3. Wirkungsgradbestimmung:

$$\eta = \frac{P_{ab}}{P_{zu}}$$
 $\eta =$

2. Leistungsverlustermittlung durch Bestimmung der Kupfer- und Eisenverluste

Kurzschlussversuchsschaltung zur Ermittlung der Kupferverluste.


Die Kurzschlussspannung U_K wird von 0V an erhöht, bis ein Nennstrom von I_{N1} = 1A fließt.

MESSWERTE:

einstellen und nachmessen	/ N₁ in A	0,6
messen	P vcu in W	

<u>Leerlaufversuchsschaltung</u> zur Bestimmung der Eisenverluste.

MESSWERTE:

einstellen und nachmessen	<i>U</i> in V	7,0
messen	l o in A	
IIIesseii	P o in W	
direkt digital messen	R 250 Wdg in Ω	

AUSWERTUNG:

1. Ermittlung der reinen Eisenverluste aus dem Leerlaufversuch :

$$P_{V_{Fe}} = P_0 - P_{0V_{Cu}}$$
 $P_{V_{Fe}} =$ mit : $P_{0V_{Cu}} = I_{0^2} \cdot R_{250 \text{ Wdg}}$ $P_{0V_{Cu}} =$

2. Leistungsverlustbestimmung aus dem Kurzschluss- und dem Leerlaufversuch :

$$P_V = P_{V_{Cu}} + P_{V_{Fe}}$$
 $P_V =$

3. Wirkungsgradbestimmung (mit *P*_{ab} aus Messschaltung 1):

$$\eta = \frac{P_{ab}}{P_{ab} + P_{Vcu} + P_{VFe}} \qquad \eta =$$