Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

M 3.0

Transformatorprinzip Übersetzungsverhältnis

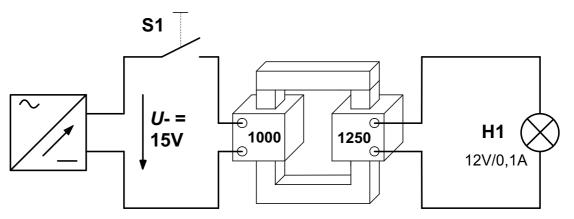
Name:	
Blatt-Nr. 1/2	Klasse:
	Datum:

PROBLEM:

Bekannt ist, dass jeder elektrische Strom ein Magnetfeld erzeugt. - Kann umgekehrt ein Magnetfeld einen elektrischen Strom bzw. eine elektrische Spannung erzeugen?

Untersucht werden deshalb zwei Spulen, die auf einen gemeinsamen Eisenkern gesteckt werden. Während eine Spule mit Strom versorgt wird, soll an der anderen überprüft werden, ob das entstandene Magnetfeld dort eine Spannung erzeugt.

BAUTEILE UND GERÄTE:


- 1 x Spule 1000 Wdg.
- 1 x Spule 1250 Wdg.
- 1 x U-Eisenkern mit Joch
- 1 x Glühlampe 12V/0,1A (grün)
- 1 x Taster (Schließer)

- 1 x Spannungskonstanter mit Strombegrenzung
- 1 x Wechselspannungsquelle 0...12V~
- 2 x Vielfachmessinstrument (analog + digital)
- 1 x Universalsteckbrett

ACHTUNG:

Strombegrenzung: 800 mA

MESSSCHALTUNG 1:

AUSWERTUNG:

Bitte kreuzen Sie an:	H1 leuchtet auf	H1 leuchtet nicht auf
S1 wird geschlossen		
S1 geschlossen		
S1 wird geöffnet		
S1 geöffnet		
S1 in kurzer Folge umschalten		

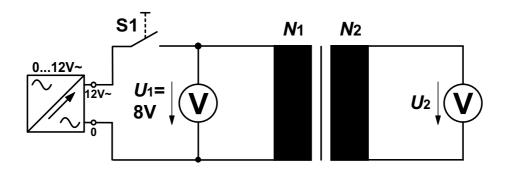
ERKENNTNIS:

1. Welches Stromverhalten in der ersten Spule(Primärwicklung) muss auftreten,damit die zweite Spule(Sekundärwicklung) einen Strom durch H1 fließen lässt?

2. Welche Spannungsart würde somit ein ständiges Leuchten von H1 hervorrufen?

Beim Betrieb mit dieser Spannungsart haben Sie einen Transformator vor sich!

PROBLEM:


Im folgenden soll der Transformator aufgrund der Erkenntnis aus dem ersten Versuchsteil an einer Wechselspannungsquelle untersucht werden.

Im Wechselspannungsbetrieb sollen zwei Messreihen aufgenommen werden:

- 1. Ein- und Ausgangswechselspannungen bei unterschiedlichen Windungszahlen.
- 2. Ein- und Ausgangswechselströme bei unterschiedlichen Windungszahlen.

1. Ein- und Ausgangsspannungen bei unterschiedlichen Windungszahlen

MESSSCHALTUNG:

MESSWERTE:

Kürzen und runden Sie gegebenenfalls die gesuchten Verhältnisse auf Brüche wie zum Beispiel: $\frac{1}{2}$

Windungs- zahlen	gemessene Spannungen	Verhältnis der Windungszahlen	Verhältnis der Spannungen
$N_1 = 500$ $N_2 = 1000$	<i>U</i> ₁ = 8 V <i>U</i> ₂ = V	$\frac{N_1}{N_2} =$	$\frac{U_1}{U_2} \approx$
$N_1 = 500$ $N_2 = 500$	<i>U</i> ₁ = 8 V <i>U</i> ₂ = V	$\frac{N_1}{N_2} =$	$\frac{U_1}{U_2} \approx$
$N_1 = 1000$ $N_2 = 500$	<i>U</i> ₁ = 8 V <i>U</i> ₂ = V	$\frac{N_1}{N_2} =$	$\frac{U_1}{U_2} \approx$

AUSWERTUNG:

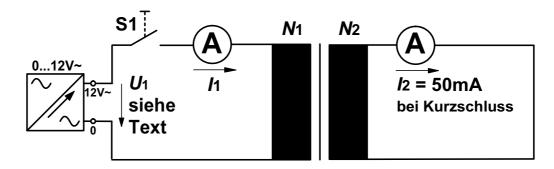
Im Leerlauf des	Fransformators, d.h. d	ie Sekundärwicklung	wurde nicht belastet,	verhalten sich
die Spannungen		die Windungszahler	١.	

Als Formel ausgedrückt: = ———

Hein - Moeller - Schule SE Energietechnik II

Fachbereich-Grundlagen

M 3.0


Transformatorprinzip Übersetzungsverhältnis

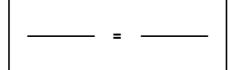
Name:	
Blatt-Nr. 2/2	Klasse:
	Datum:

2. Ein- und Ausgangsströme bei unterschiedlichen Windungszahlen

MESSSCHALTUNG:

Die Eingangswechselspannung wird von 0V an erhöht, bis ein Kurzschlussstrom /2 = 50mA fließt.

MESSWERTE:


Kürzen und runden Sie gegebenenfalls die gesuchten Verhältnisse auf Brüche wie zum Beispiel: $\frac{1}{2}$

Windungs- zahlen	gemessene Ströme	Verhältnis der Windungszahlen	Verhältnis der Ströme
$N_1 = 500$ $N_2 = 1000$	I ₁ = mA I ₂ = 50 mA	$\frac{N_1}{N_2} =$	$\frac{l_1}{l_2} \approx$
$N_1 = 500$ $N_2 = 500$	I1 = mA I2 = 50 mA	$\frac{N_1}{N_2} =$	<u>l₁</u> ≈ —
$N_1 = 1000$ $N_2 = 500$	I ₁ = mA I ₂ = 50 mA	$\frac{N_1}{N_2} =$	<u>l₁</u> ≈ —

AUSWERTUNG:

Am Transformator verhalten sich die Ströme	die	е
Windungszahlen		

Als Formel ausgedrückt:

ERKENNTNIS:

Bei Vernachlässigung der Verlustleistungen im Transformator läßt sich das Übersetzungsverhältnis *ü* von Wicklungs-,Spannungs- und Stromverhältnis wie folgt formulieren:

Übersetzungsverhältnis: