Hein - Moeller - Schule **○SZ** Energietechnik II

Fachbereich-Grundlagen

G 7.1

GEMISCHTE WIDERSTANDSSCHALTUNG II

Name: HOPPE Blatt-Nr. Klasse: 1/1 Datum:

PROBLEM:

Die Gesetze der Reihen- und Parallelschaltung sollen mit Hilfe von Strom- und Spannungsmessungen an einer gemischten Widerstandsschaltung überprüft werden.

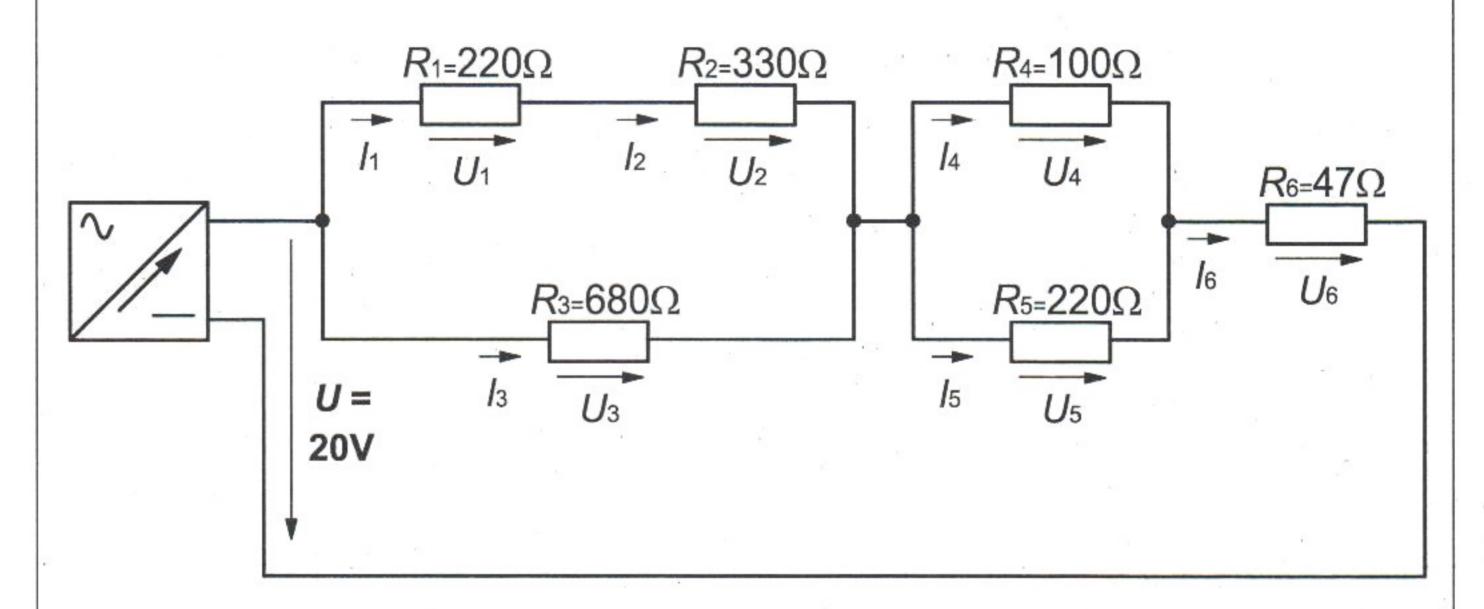
BAUTEILE UND GERÄTE:

Widerstände: $1 \times 47\Omega$; $1 \times 100 \Omega$

 $2 \times 220 \Omega$; $1 \times 330 \Omega$

1 x 680 Ω

1 x Spannungskonstanter mit Strombegrenzung


1 x Vielfachmessinstrument (digital)

1 x Universalsteckbrett

ACHTUNG:

Strombegrenzung: 100mA

MESSSCHALTUNG:

MESSWERTE:

1. Trennen Sie die Schaltung von der Spannungsversorgung!

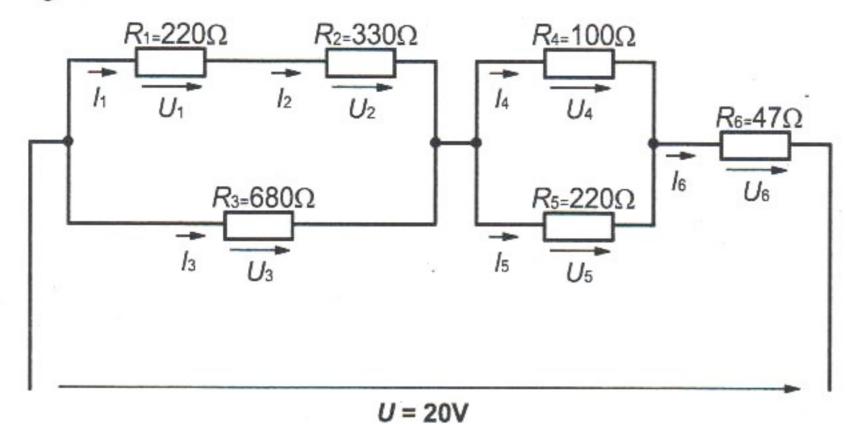
Messen Sie im spannungslosen Zustand den Gesamtwiderstand der Schaltung direkt mit dem Vielfachmessinstrument:

$$R_{\text{ges}} = 413 \Omega$$

2. Messen Sie die folgende Spannungen und Ströme:

messen	U ₁	U ₂	Uз	U ₄	U 5	U ₆
in V	5,8	8,77	14,57	3,27	3,27	2,24

messen	<i>I</i> ₁	<i>I</i> ₂	/ 3	1 4	/ 5	/ 6
in mA	24,6	24,6	21,5	32,8	15,0	47,6


AUSWERTUNG:

Berechnenen Sie den Gesamtwiderstand, alle Spannungen und Ströme auf der Rückseite, und vergleichen Sie die Lösungen mit den Messwerten.

Versuchen Sie bei eventuellen Abweichungen die Fehlerquellen zu benennen!

Berechnung der gemischten Widerstandsschaltung:

Gegeben:

Gesucht: Rges;

U1; U2; U3; U4; U5; U6 I1; I2; I3; I4; I5; I6.

Lösung: RA

$$R_{A_1Z_1} = R_{A} + R_{Z_1} = 220 R + 330 R = 550 S$$

$$R_{A_1Z_1} = \frac{R_{A_1Z_1} \cdot R_3}{R_{A_1Z_1} + R_3} = \frac{550 R \cdot 680 R}{550 R + 680 R} = 304,07 R$$

$$R_{A_1Z_1} = \frac{R_1 \cdot R_5}{R_1 \cdot R_1} = \frac{100 R \cdot 220 R}{100 R + 220 R} = 68,75 R$$

$$R_{A_1Z_1} = \frac{R_1 \cdot R_5}{R_1 \cdot R_1} = \frac{100 R \cdot 220 R}{100 R + 220 R} = 68,75 R + 47 R = 413,82 R$$

$$R_{A_1Z_1} = \frac{U}{R_{A_1Z_1}} = \frac{20V}{413,82 R} = 47,64 mA$$

$$U_6 = R_6 \cdot I_6 = 47 \cdot I_2 \cdot 47,64 mA = 2,24 V$$

$$U_{41} = U_5 = R_{41} \cdot I_6 = 68,75 \cdot I_7 \cdot 47,64 mA = 3,28 V$$

$$U_{412,3} = U_{600} - (U_{41,5} + U_0) = 20V - (2,24 U + 3,28 V) = 14,48 V$$

$$I_3 = \frac{U_{412,3}}{R_3} = \frac{141,43 V}{680 S} = 21,3 mA$$

$$I_{41} = I_6 - I_3 = 47,64 mA - 21,3 mA = 26,34 mA$$

$$I_{41} = \frac{U_{415}}{R_{41}} = \frac{3,28 V}{100 S} = 32,25 mA$$

$$I_{5} = \frac{U_{415}}{U_{415}} = \frac{3,28 V}{210 S} = 44,83 mA$$

$$U_7 = R_7 \cdot I_{412} = 220 \cdot S \cdot 26,34 mA = 8,63 V$$

$$U_{42} = R_7 \cdot I_{412} = 320 \cdot S \cdot 26,34 mA = 8,63 V$$