Hein-Moeller-Schule **○SZ** Energietechnik II

Fachbereich-Grundlagen

G 7.0

GEMISCHTE WIDERSTANDSSCHALTUNG

Name: Blatt-Nr. Klasse: 1/1 Datum:

PROBLEM:

Die Gesetze der Reihen- und Parallelschaltung sollen mit Hilfe von Strom- und Spannungsmessungen an einer gemischten Widerstandsschaltung überprüft werden.

BAUTEILE UND GERÄTE:

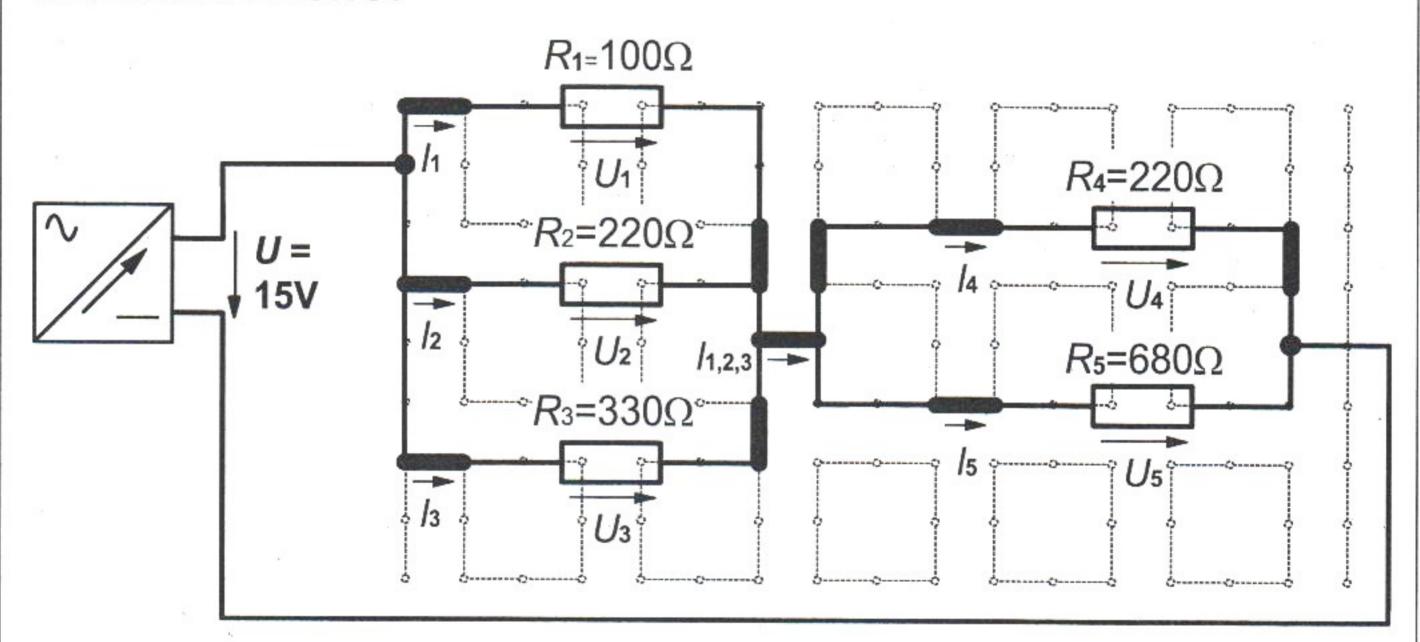
Widerstände: 1 x 100 Ω

2 x 220 Ω

1 x 330 Ω

 $1 \times 680 \Omega$

1 x Spannungskonstanter mit Strombegrenzung


1 x Vielfachmessinstrument (digital)

1 x Universalsteckbrett

ACHTUNG:

Strombegrenzung: 100mA

MESSSCHALTUNG:

MESSWERTE:

1. Trennen Sie die Schaltung von der Spannungsversorgung!

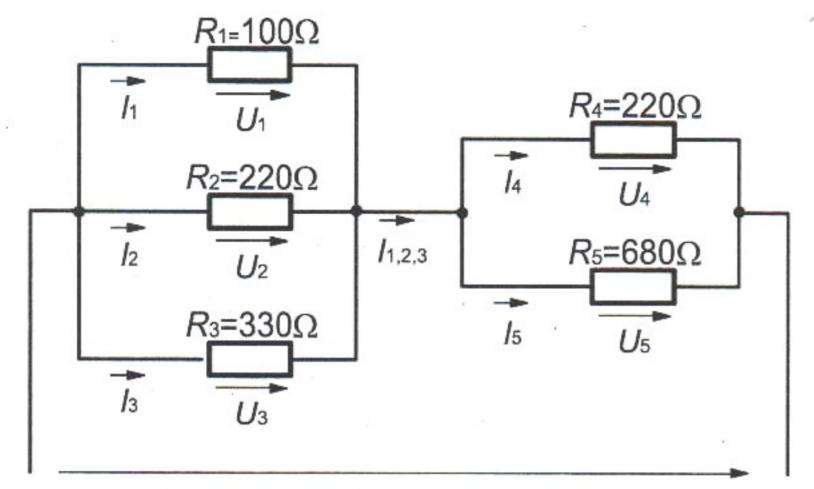
Messen Sie im spannungslosen Zustand den Gesamtwiderstand der Schaltung direkt mit dem Vielfachmessinstrument:

$$R_{Ges} = 223,3 \Omega$$

2. Messen Sie die folgende Spannungen und Ströme:

messen	U ₁	U ₂	U ₃	U ₄	U ₅
in V	3,84	3,84	3,84	11/16	11,16

messen	<i>I</i> ₁	12	/3	/1,2,3	14	/ 5
in mA	38	17,4	11,6	67,1	90,6	16,5


AUSWERTUNG:

Berechnenen Sie den Gesamtwiderstand, alle Spannungen und Ströme auf der Rückseite, und vergleichen Sie die Lösungen mit den Messwerten.

Versuchen Sie bei eventuellen Abweichungen die Fehlerquellen zu benennen!

Berechnung der gemischten Widerstandsschaltung:

Gegeben:

Gesucht: Rges;

U1; U2; U3; U4; U5;

11; 12; 13; 11,2,3; 14; 15

$$U = 15V$$

Lösung:

$$\frac{1}{R_{112,13}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{100 \text{ R}} + \frac{1}{220 \text{ R}} + \frac{1}{330 \text{ R}}$$

$$= 0.00 \text{ R} 6 \frac{1}{2} \Rightarrow R_{112,13} = 56.9 \text{ R}$$

$$R_{Ges} = R_{1,2,3} + R_{4,5} = S_{6,3}S_{5} + 166,2S = 223,1S_{2}$$

$$I_{4,2,3} = I_{Ges} = \frac{U}{R_{Ges}} = \frac{15V}{223,1S_{2}} = 67,23 \text{ mA}$$

$$U_{A} = U_{2} = U_{3} = R_{4,2,3} \cdot I_{4,2,3} = S_{6,3}S_{2} \cdot 67,23 \text{ mA} = 3,83V$$

$$U_{A} = U_{2} = U_{3} = R_{4,2,3} \cdot I_{4,2,3} = S_{6,3}S_{2} \cdot 67,23 \text{ mA} = 3,83V$$

$$1_{1} = \frac{U_{1}}{R_{1}} = \frac{3.83V}{100 SR} = 38,25 \text{ mA}$$

$$1_{2} = \frac{U_{2}}{R_{2}} = \frac{3.83V}{220 SR} = 17,39 \text{ mA}$$

$$1_{3} = \frac{U_{3}}{R_{3}} = \frac{3.83V}{330 SR} = 11,59 \text{ mA}$$

$$1_{4} = \frac{U_{4}}{R_{4}} = \frac{11,14V}{220 SR} = 50,8 \text{ mA}$$

$$1_{5} = \frac{U_{5}}{R_{5}} = \frac{11,14V}{680 SR} = 16,43 \text{ mA}$$