Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

G 6.0

Blatt-Nr. Klasse:

Name:

PARALLELSCHALTUNG v. WIDERSTÄNDEN Messtechnische Herleitung

1 Datum:

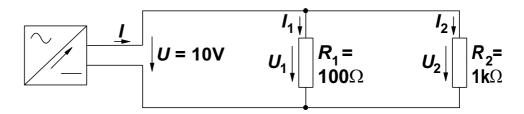
PROBLEM:

Die Gesetzmäßigkeiten zum Verständnis der Parallelschaltung von ohmschen Widerständen sollen messtechnisch hergeleitet werden.

BAUTEILE UND GERÄTE:

Widerstände: 1 x $10\Omega/5W$; 2 x $24\Omega/5W$

1 x 48Ω/5W; 1 x 100Ω; 1 x 1kΩ


1 x Glühlampe 12V/0,1A (grün) 1 x Glühlampe 7V/0,3A (rot)

- 1 x Spannungskonstanter mit Strombegrenzung
- 2 x Vielfachmessinstrument (analog+digital)
- 1 x Universalsteckbrett

ACHTUNG:

Strombegrenzung: 330mA

MESSSCHALTUNG 1:

MESSWERTE:

AUSWERTUNG:

einstellen u. nachmessen	<i>U</i> in V	10
messen	U ₁ in V	
	U ₂ in ∨	

Welcher Zusammenhang besteht zwischen *U*, *U*₁, *U*₂ ?

U =

In Worten:

messen	I in A
	I₁ in A
	I ₂ in A

Welcher Zusammenhang besteht zwischen *I*, *I*₁, *I*₂ ?

/=

In Worten:

Trennen Sie die Parallelschaltung von der Versorgungsspannung und messen Sie den Gesamtwiderstand der Schaltung direkt mit dem Messinstrument.

Folgender Zusammenhang besteht zwischen R1, R2 und dem Gesamtwiderstand Rges:

 $R_{\text{ges}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_n}}$

 $\begin{array}{|c|c|c|} \hline \textbf{direkt} & & & \\ \textbf{messen} & & & \\ \hline \end{array}$

Für nur **2 parallele Widerstände** gilt auch die nebenstehende Formel:

$$R_{\rm ges} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

AUSWERTUNG:

Vergleichen Sie das Ergebnis der Formel:

$$R_{\text{ges}} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Wie groß ist der Gesamtwiderstand im Vergleich zu den Einzelwiderständen?

mit der Berechnung nach dem Ohmschen Gesetz:

$$R_{\text{ges}} = \frac{U}{I}$$

In welchem Verhältnis teilen sich die Ströme I1 und I2 auf? (Messwerte kürzen!)

In welchem Verhältnis stehen die Widerstände R₁ und R₂ zueinander? (Widerstandswerte kürzen!)

Welcher Zusammenhang besteht zwischen dem Verhältnis der

Ströme $\frac{I_1}{I_1}$ und dem Verhältnis der Widerstände ?

ZUSAMMENFASSUNG: (<u>Aber:</u> Alle Angaben bezogen auf <u>drei</u> Parallelwiderstände!)

1. Zusammenhang der Spannungen

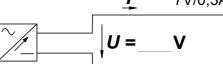
U =

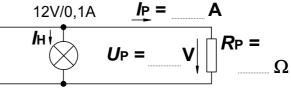
2. Zusammenhang der Ströme (Erstes Kirchhoffsche Gesetz)

3. Zusammenhang der Widerstände

 $R_{\text{qes}} =$

4. Verhältnis der Ströme zu den Widerständen


(Geben Sie mindestens zwei unterschiedliche Verhältnisse an.)


ANWENDUNGSBEISPIEL:

PROBLEM:

Zwei Glühlampen (12V/0,1A und 7V/0,3A) sollen mit ihren Nennwerten in Reihe betrieben werden. Der Parallelwiderstand R_P muß zuvor rechnerisch bestimmt werden.

SCHALTUNGSAUFBAU: /

BERECHNUNG VON RP:

KONTROLL- MESSUNG:	einstellen und nachmessen	<i>U</i> in V
		U P in ∨
	messen	<i>I</i> in A
		I P in A

*I*H in A

D	<i>U</i> P	<i>U</i> P _	_	
<i>R</i> P =	<u></u>	=	 =	

Aus welchen vorhandenen Teilwiderständen läßt sich RP genau zusammenstellen?

R_P =