Hein-Moeller-Schule

OSZ Energietechnik II

Fachbereich-Grundlagen

G 4.1

LEITERWIDERSTAND

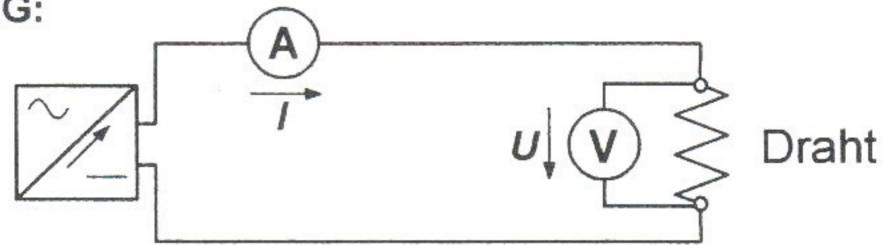
Name: HOPPE Blatt-Nr. Klasse: Datum:

PROBLEM:

Es soll die Abhängigkeit des Leiterwiderstandes von dem verwendeten Material, dem Leiterquerschnitt und der Leiterlänge nachgewiesen werden.

BAUTEILE UND GERÄTE:

Brett mit Leitern aus verschiedenen Materialien und unterschiedlichen Querschnitten


- 1 x Spannungskonstanter mit Strombegrenzung
- 2 x Vielfachmessinstrument (analog + digital)

ACHTUNG:

Strombegrenzung: 0,95 A

Pro Arbeitstisch (zwei Schülerplätze) ein Versuchsaufbau.

MESSSCHALTUNG:

MESSWERTE:

	Drahtmaterial	Cu	Fe	Konstantan		
	Drahtlänge I in m	1	1	1	1	2
	Drahtdurch- messer d in mm	0,2	0,2	0,2	0,3	0,2
einstellen und nachmessen	U in ∨	0,5	2	3	3	3
messen	I in A	0,82	0,47	0,13	0,40	0,03
rechnen	R in Ω	0,61	4,26	15,79	7,5	33,33
	A in mm ²	0,031 4	0,0314	0,0314	0,0707	0,0314
	ϱ in $\frac{\Omega \cdot \text{mm}^2}{\text{m}}$	0,0192	0,134	0,436	0,530	0,523
Tabellen wate		0,0178	0,1	0,43	०,५९	0,49

Rechenhilfe:

 $\varrho = \frac{R \cdot A}{I}$ mit $A = d^2 \cdot \frac{\pi}{4}$

- Q (rho) spezifischer Widerstand (materialabhängig)
- Drahtquerschnitt in mm²

AUSWERTUNG:

- 1. Kreuzen Sie an, welche der Proportionalitäten jeweils zutrifft.
- 2. Ergänzen sie mit ihren Antworten die Formel des Leiterwiderstandes

$$\bigcirc R \sim \frac{1}{l} \bigotimes R \sim \frac{1}{A} \bigcirc R \sim \frac{1}{\varrho}$$