Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

G 4.1

LEITERWIDERSTAND

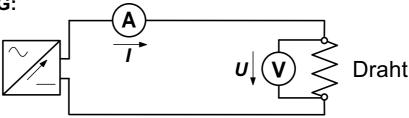
Name: Blatt-Nr. Klasse: Datum:

PROBLEM:

Es soll die Abhängigkeit des Leiterwiderstandes von dem verwendeten Material, dem Leiterguerschnitt und der Leiterlänge nachgewiesen werden.

BAUTEILE UND GERÄTE:

Brett mit Leitern aus verschiedenen Materialien und unterschiedlichen Querschnitten


- 1 x Spannungskonstanter mit Strombegrenzung
- 2 x Vielfachmessinstrument (analog + digital)

ACHTUNG:

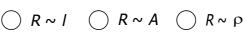
Strombegrenzung: 0,95 A

Pro Arbeitstisch (zwei Schülerplätze) ein Versuchsaufbau.

MESSSCHALTUNG:

MESSWERTE:

	Drahtmaterial	Cu	Fe	Konstantan		
	Drahtlänge <i>I</i> in m	1	1	1	1	2
	Drahtdurch- messer d in mm	0,2	0,2	0,2	0,3	0,2
einstellen und nachmessen	<i>U</i> in V	0,5	2	3	3	3
messen	<i>I</i> in A					
	\boldsymbol{R} in Ω					
rechnen	A in mm²					
	ρ in $\frac{\Omega \cdot \text{mm}^2}{\text{m}}$					


Rechenhilfe:

$$\rho = \frac{R \cdot A}{I} \quad \text{mit} \quad A = d^2 \cdot \frac{\pi}{4}$$

- ρ (rho) spezifischer Widerstand (materialabhängig)
- A Drahtquerschnitt in mm²

AUSWERTUNG:

- 1. Kreuzen Sie an, welche der Pro-
- die Formel des Leiterwiderstandes

Kreuzen Sie an, welche der Proportionalitäten jeweils zutrifft.
Ergänzen sie mit ihren Antworten die Formel des Leitenwiderstandes