Hein - Moeller - Schule SE Energietechnik II

Fachbereich-Grundlagen

G 4.0

DIREKTE und INDIREKTE WIDERSTANDSMESSUNG

Name: Hoppe

Blatt-Nr. Klasse:

Datum:

PROBLEM:

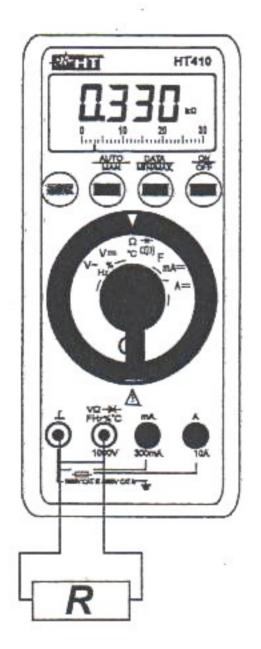
Es soll geprüft werden, ob die aufgedruckten Werte der Widerstände stimmen oder Toleranzen haben.

BAUTEILE UND GERÄTE:

1 x Widerstand 330Ω

1 x Widerstand 1kΩ

1 x Widerstand 10kΩ


1 x Spannungskonstanter mit Strombegrenzung

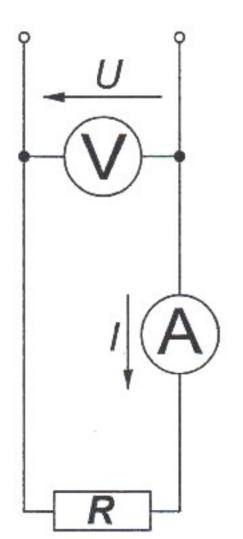
2 x Vielfachmessinstrument (analog+digital)

1 x Universalsteckbrett

DIREKTE MESSUNG:

Ermitteln Sie den Widerstandswert, indem Sie den Wert direkt mit dem digitalen Vielfachmessinstrument ausmessen. (Siehe Messschaltung!)

	angegebener Wert auf dem Bauteil in Ω	330	1k	10k
messen	gemessener Wert in Ω	327	1003	10010
rechnen	Abweichung vom angegebenen Wert in Ω	3	3	10
	Toleranz in %	0,3	0,3	0,1
ablesen, ein- tragen und vergleichen	Toleranzangabe des Herstellers in %	5	5	5


Rechenhilfe: Toleranz [%] = $\frac{100\% \cdot \text{Abweichung } [\Omega]}{\text{angegebener Wert } [\Omega]}$

INDIREKTE MESSUNG:

Bestimmen Sie die Widerstandswerte durch Messung von Strom und Spannung.

ACHTUNG:

Strombegrenzung: 50mA

	\boldsymbol{R} in Ω	330	1k	10k
einstellen und nachmessen	U in ∨	10	10	10
messen	<i>I</i> in mA	30,6	3,3	1
	$R = \frac{U}{I}$ in Ω	nΩ 326,8 1010,1	10000	
rechnen	Abweichung vom angegebenen Wert in Ω	3,2	10,1	0
	Toleranz in %	0,36	1,01	0

AUSWERTUNG:

Vergleich der ermittelten Widerstandswerte bei direkter und indirekter Messung:

angegebener Widerstandswert	330Ω	1kΩ	10kΩ	
direkte Messung	327	1003	10010	
indirekte Messung	326, 8	1010,1	10000	

Welche Messung lieferte den genaueren Wert?

Voraussetzung: Verwendung von hochwertigen Messinstrumenten.

Ergebnisfehler entstehen durch: Ablesefehler, Erwärmung der Bauteile, Rundung beim Rechnen, Güteklasse der Messinstrumente, usw.

Mit Berücksichtigung der angesprochenen Messfehlermöglichkeiten liefert die direlde Widerstandsmessung den genauesten Wert.