Hein - Moeller - Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

G 4.0

DIREKTE und INDIREKTE Blatt-Nr. Klasse: Und WIDERSTANDSMESSUNG 1/1 Datum:

	Name:		
	Blatt-Nr.	Klasse:	
1	1/1		

PROBLEM:

Es soll geprüft werden, ob die aufgedruckten Werte der Widerstände stimmen oder Toleranzen haben.

BAUTEILE UND GERÄTE:

1 x Widerstand 330Ω

1 x Widerstand 1k Ω

 $1 \text{ x Widerstand } 10 \text{k}\Omega$

1 x Spannungskonstanter mit Strombegrenzung

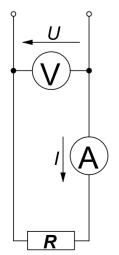
2 x Vielfachmessinstrument (analog+digital)

1 x Universalsteckbrett

DIREKTE MESSUNG:

Ermitteln Sie den Widerstandswert, indem Sie den Wert direkt mit dem digitalen Vielfachmessinstrument ausmessen. (Siehe Messschaltung!)

	angegebener Wert auf dem Bauteil in Ω	330	1κ	10κ
messen	gemessener Wert in Ω			
rechnen	Abweichung vom angegebenen Wert in Ω			
recimen	Toleranz in %			
ablesen, ein- tragen und vergleichen	Toleranzangabe des Herstellers in %			


Rechenhilfe: Toleranz [%] = $\frac{100\% \cdot \text{Abweichung } [\Omega]}{\text{angegebener Wert } [\Omega]}$

INDIREKTE MESSUNG:

Bestimmen Sie die Widerstandswerte durch Messung von Strom und Spannung.

ACHTUNG:

Strombegrenzung: 50mA

	$m{R}$ in Ω	330	1k	10k
einstellen und nachmessen	<i>U</i> in V	10	10	10
messen	<i>I</i> in mA			
	$R = \frac{U}{I}$ in Ω			
rechnen	Abweichung vom angegebenen Wert in Ω			
	Toleranz in %			

AUSWERTUNG:

Vergleich der ermittelten Widerstandswerte bei direkter und indirekter Messung:

angegebener Widerstandswert	330Ω	1kΩ	10k Ω
direkte Messung			
indirekte Messung			

Welche Messung lieferte den genaueren Wert?

Voraussetzung: Verwendung von hochwertigen Messinstrumenten.

Ergebnisfehler entstehen durch: Ablesefehler, Erwärmung der Bauteile, Rundung beim Rechnen, Güteklasse der Messinstrumente, usw.

Mit Berücksichtigung der angesprochenen Messfehlermöglichkeiten				
liefert die	Widerstandsmessung den genauesten Wert.			