Hein-Moeller-Schule

SE Energietechnik II

Fachbereich-Grundlagen

G 2.2

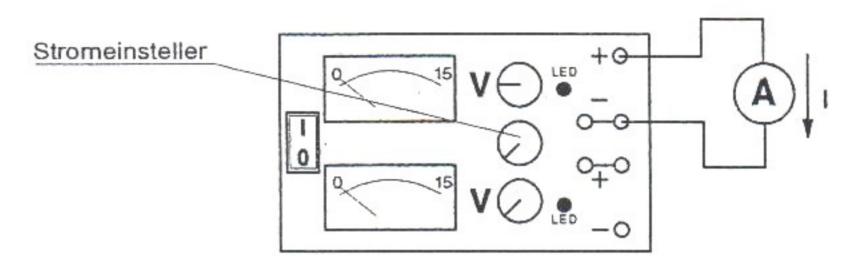
SPANNUNGS- UND STROM-MESSÜBUNG

Name: Hoppe

Blatt-Nr. Klasse:

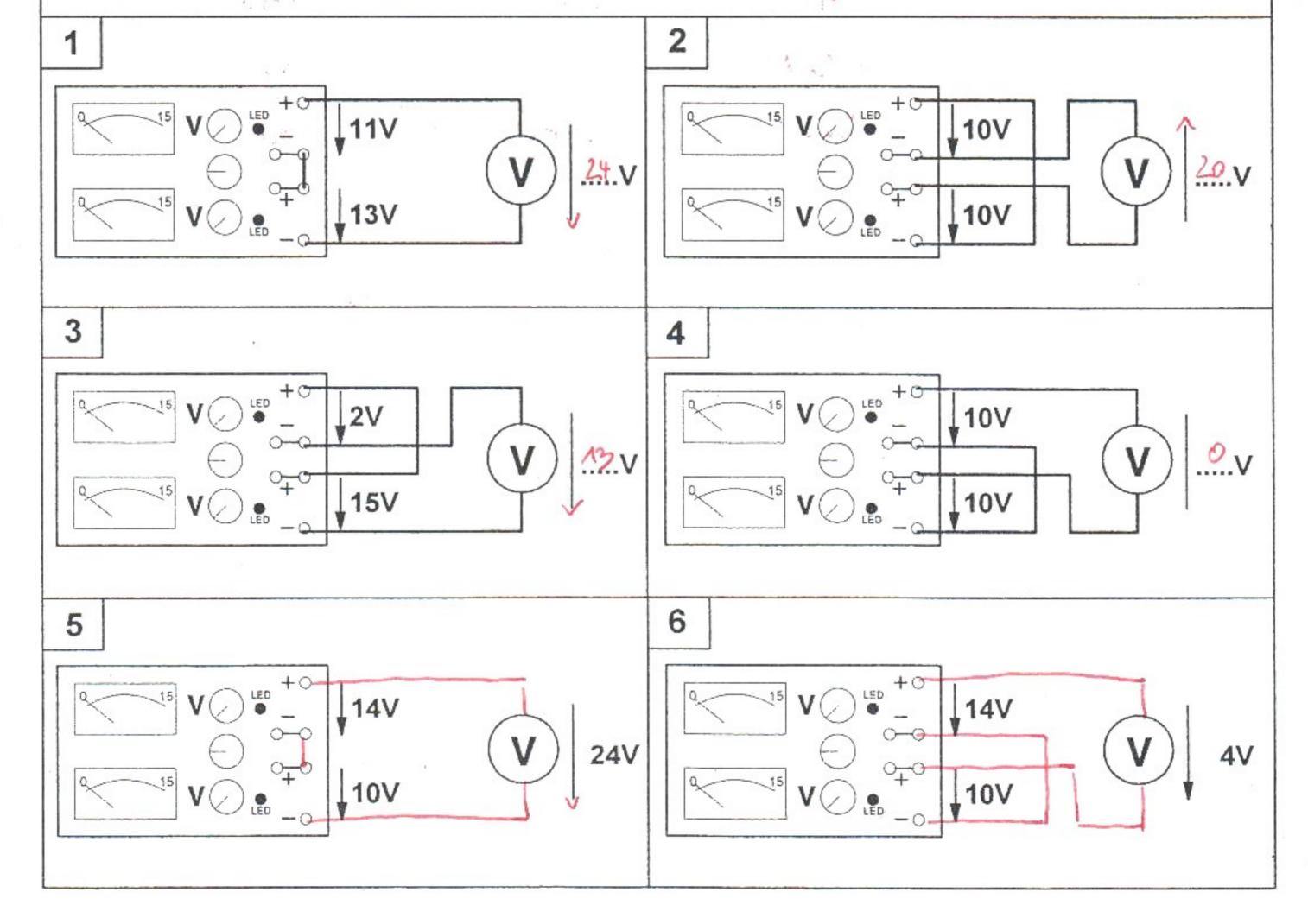
Datum:

ARBEITSAUFTRAG:

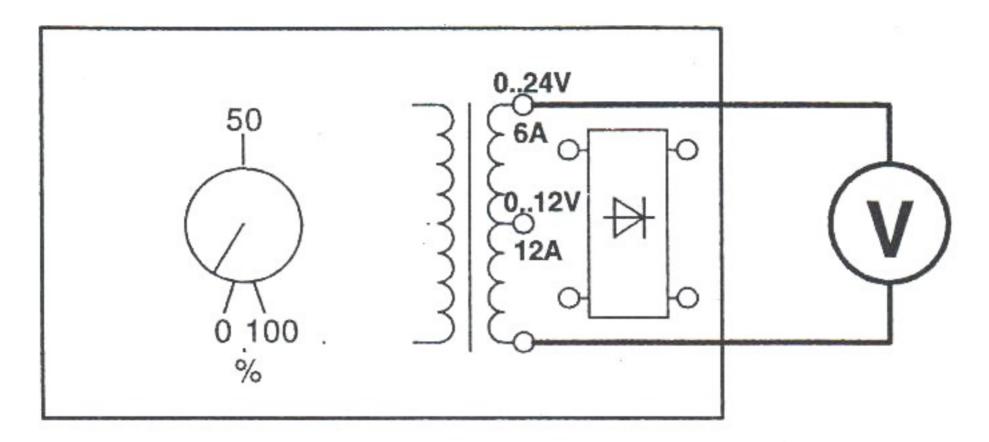

- Ergänzen Sie zunächst die unten wiedergegebenen Messschaltungen durch Eintragen der fehlenden Spannungswerte und Spannungspfeile bzw. durch Einzeichnen der fehlenden Leitungsverbindungen.
- 2. Kontrollieren Sie Ihre Ergebnisse jeweils durch eine entsprechende Messschaltung.

ACHTUNG:

Strombegrenzung: 50mA


Zur Erinnerung: Einstellung der Strombegrenzung

1. Spannungskonstanter ausgeschaltet


- Stromeinsteller am linken Anschlag
- Oberer Spannungseinsteller etwas aufgedreht (siehe Messschaltung)
- 2. Spannungskonstanter eingeschaltet
 - beide LED leuchten, Strommeßinstrument zeigt I = 0A
 - Stromeinsteller langsam aufdrehen
 - Untere LED verlischt, Anzeige des Strommessinstruments auf 100mA einstellen.
- 3. Strommessinstrument abklemmen und gewünschte Gleichspannung einstellen.

MESSSCHALTUNGEN:

ARBEITSAUFTRAG (WECHSELSPANNUNGSMESSUNG):

- Stellen Sie den in der Tabelle angegebenen Wechselspannungswert mit dem digitalen Messinstrument genau ein.
- 2. Überprüfen Sie den eingestelleten Spannungswert mit dem analogen Messinstrument in den angeführten Messbereichen.
- Bestimmen Sie den Messfehler der Anzeige bei möglichst paralaxenfreier Ablesung des Messwertes.

MESSWERTE:

digital einzustellende Wechselspannung (Messwert)	IMACCHARAICHI	analoger Kontroll- messwert	Messfehler in V (Messwert – Kontrollmesswert)	Messfehler in %
9V~	300V~	7,11	1,3	21,1
9V~	100V~	7,81	12	13,3
9V~	30V~	8,30	O _l A	1.1
9V~	10V~	8,33V	0,07	0,78

Berechnungsformel:

Messfehler in % =
$$\frac{Messfehler \text{ in V x 100\%}}{Messwert}$$

AUSWERTUNG:

Bitte kreuzen Sie an: Der Anzeigenfehler ist ...

im ersten Drittel

in der ersten Hälfte

im letzten Drittel

... der Skala am geringsten.

Hein-Moeller-Schule SE Energietechnik II

Fachbereich-Grundlagen

G 2.2

SPANNUNGS- UND STROM-MESSÜBUNG

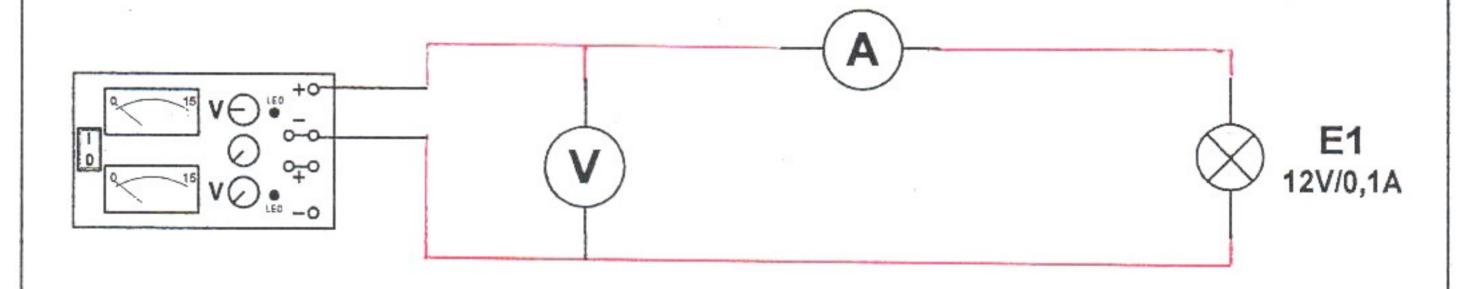
Name:	HOPPE	
Blatt-Nr.	Klasse:	
2/2	Datum:	

PROBLEM:

Es soll eine Prüfschaltung entworfen werden, die es ermöglicht den Nennbetriebsstrom von Glühlampen bei Nennbetriebsspannung zu überprüfen.

BAUTEILE UND GERÄTE:

2 x Glühlampe 12V/0,1A (grün)


- 1 x Spannungskonstanter mit Strombegrenzung
- 2 x Vielfachmessinstrument (analog+digital)
- 1 x Universalsteckbrett

ACHTUNG:

Strombegrenzung: 130mA

MESSSCHALTUNG:

- 1. Vervollständigen Sie den Schaltplan des Messaufbaus.
- 2. Überprüfen nacheinander Sie mit Ihrer Messschaltung den Nennbetriebsstrom (I_N = 100mA) von zwei Glühlampen.

MESSERGEBNIS:

		Glühlampe 1	Glühlampe 2
einstellen und nachmessen	<i>U</i> _N in ∨	12	12
messen	I in mA	30,6	34,6
rechnen	Abweichung von In = 100mA in %	8,4	5,4

AUSWERTUNG:

Geben Sie die größte, von Ihnen ermittelte Abweichung vom Nennbetriebsstrom IN an.

Größte Abweichung = %

PROBLEM:

Messtechnische Untersuchung des Stromflusses in der Hin- und Rückleitung eines einfachen Stromkreises.

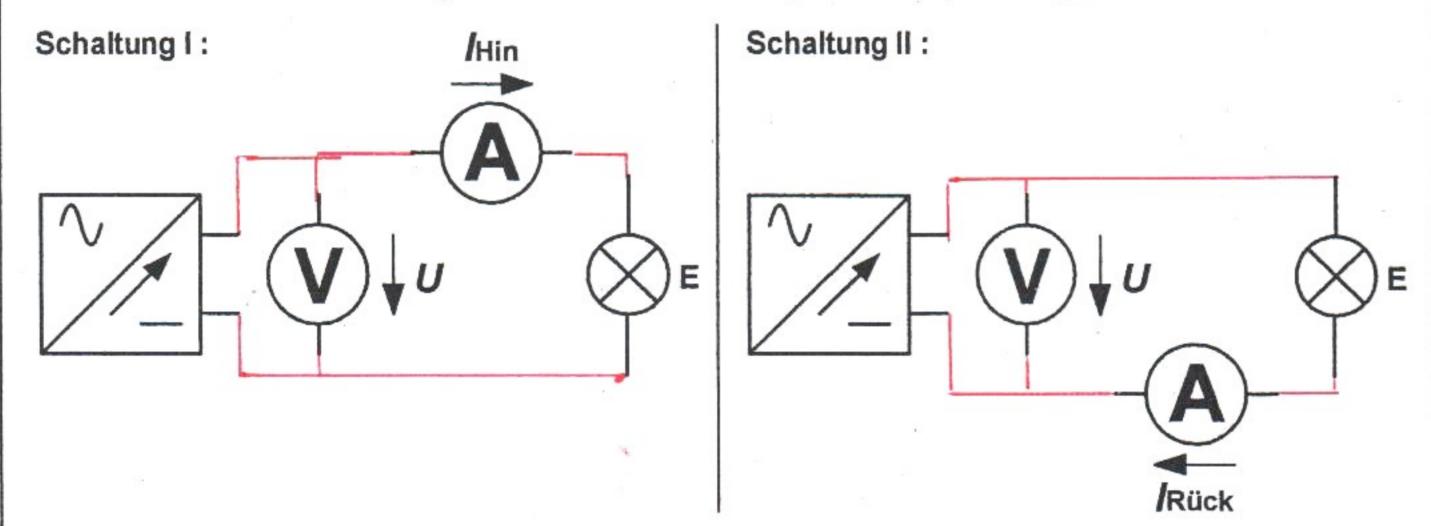
BAUTEILE UND GERÄTE:

1 x Glühlampe 7V/0,3A (rot)

1 x Glühlampe 12V/0,1A (grün)

1 x Spannungskonstanter mit Strombegenzung

2 x Vielfachmessinstrument (digital+analog)


1 x Universalsteckbrett

ACHTUNG:

Strombegrenzung: 300mA

MESSSCHALTUNG:

Ergänzen Sie die beiden Messschaltungen durch Einzeichnen von je einem Strommessinstrument in Hin- und Rückleitung des Verbrauchers und je einem Spannungsmessinstrument.

MESSWERTE:

		E1 = 7V/0,3A	E2 = 12V/0,1A
einstellen und nachmessen	U in V	5	8
messen	Inn in mA	240,5	71,7
	Irück in mA	240,7	71,6

AUSWERTUNG:

Kreuzen Sie die richtige Antwort an:

Vergleicht man beide Ströme, so ist der Strom in der Rückleitung

kleiner

genau so groß (Geringe, messtechnisch bedingte Abweichungen sind möglich!)

größer.