Hein - Moeller - Schule SE Energietechnik II

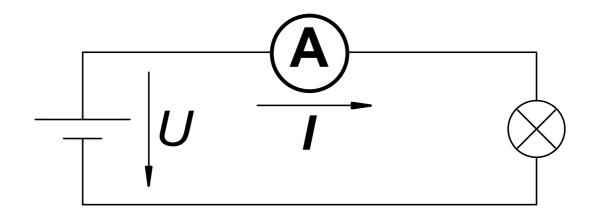
G 2.1

STROMMESSUNG

Umgang m. d. Vielfachmessinstrument

Name:

Blatt-Nr. Klasse:
Datum:


Fachbereich-Grundlagen

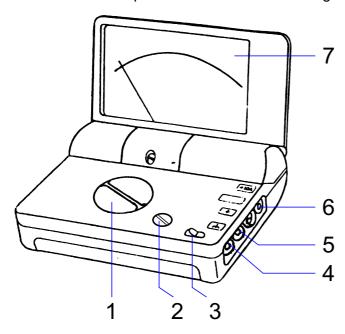
MESSREGELN FÜR VIELFACHMESSINSTRUMENTE:

- Instrument nie erschüttern.
- Ein Analogmessinstrument muss lagerichtig betrieben werden.
- Vor dem Messen den jeweils größten Messbereich einschalten.
- Beim Messen langsam auf kleinere Messbereiche herunterschalten, bis die größtmöglichste Messwertanzeige erreicht ist.
- Zeiger darf nicht am rechten und linken Rand anschlagen.
- Vor jeder Änderung der Messfunktion und der Messpunkte das Messobjekt spannungsfrei schalten, dann erst die Messleitungen umstecken.
- Nach Beenden der Arbeit im Labor das Gerät ausschalten und den Messbereichsschalter auf den größten Spannungsmessbereich stellen. (Beim Analoginstrument auf 1000V~.)

STROMMESSREGEL:

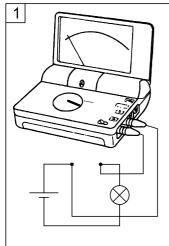
Das Messinstrument wird zur Strommessung immer in Reihe, d.h. die stromdurchflossene Leitung muss aufgetrennt und das Messinstrument in den Leitungsweg geschaltet werden.

Hein-Moeller-Schule **○**\$**Z** Energietechnik II

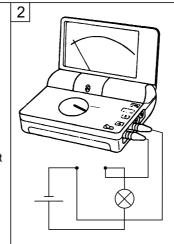

G 2.1 STROMMESSUNG

Fachbereich-Grundlagen Umgang m. d. Vielfachmessinstrument

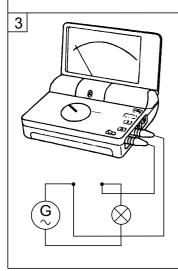
Name: Blatt-Nr. Klasse: Datum:

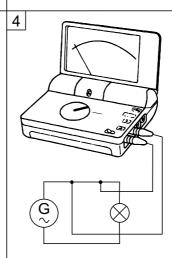

ARBEITSAUFTRAG 1:

Kennzeichnen Sie die Bedienungselemente und Anschlüsse des Messinstrumentes durch das Zuordnen der entsprechenden Ziffern in der abgebildete Tabelle:

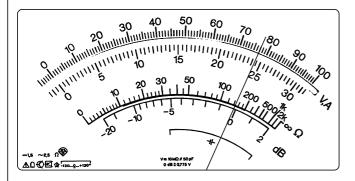


Ziffer	Bedienungselemente und Anschlüsse	
	Skale	
	Anschlussbuchse ⊥ für alle Messbereiche	
	Anschlusbuchse + für alle Messbereiche außer 10A	
	Anschlussbuchse nur für den 10A-Messbereich	
	EIN-/AUS-Schalter	
	Messbereichsschalter	
	Potentiometer für Endwertein- stellung bei Widerstandsmes- sung	


Kreuzen Sie an, wie das Messinstrument geschaltet ist. (Jeweils nur eine richtige Antwort!)

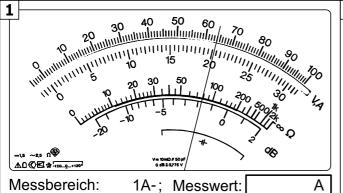

- fehlerlose Wechselstrommessung
- fehlerlose Gleichstrommessung
- Eine Strommessung ist nicht möglich, da der Stromkreis nicht aufgetrennt wurde.
- (d) Eine Messung ist nicht möglich, da das Messinstrument falsch gepolt wurde.
- Eine Messung ist nicht möglich, da der Messbereichsschalter in einer falschen Stellung steht.

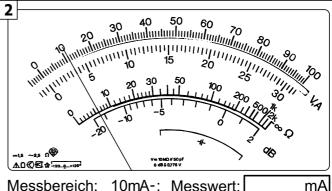
- fehlerlose Wechselstrommessung
- fehlerlose Gleichstrommessung
- Eine Strommessung ist nicht möglich, da der Stromkreis nicht aufgetrennt wurde.
- Eine Messung ist nicht möglich, da das Meßinstrument falsch gepolt wurde.
- Eine Messung ist nicht möglich, da der Meßbereichsschalter in einer falschen Stellung steht.


- fehlerlose Wechselstrommessung
- fehlerlose Gleichstrommessung
- Eine Strommessung ist nicht möglich, da der Stromkreis nicht aufgetrennt wurde.
- (d) Eine Messung ist nicht möglich, da das Messinstrument falsch gepolt wurde.
- Eine Messung ist nicht möglich, da der Messbereichsschalter in einer falschen Stellung steht.

- fehlerlose Wechselstrommessung
- fehlerlose Gleichstrommessung
- Eine Strommessung ist nicht möglich, da der Stromkreis nicht aufgetrennt wurde.
- Eine Messung ist nicht möglich, da das Messinstrument falsch gepolt wurde.
- Eine Messung ist nicht möglich, da der Messbereichsschalter in einer falschen Stellung steht.

ARBEITSAUFTRAG 2:

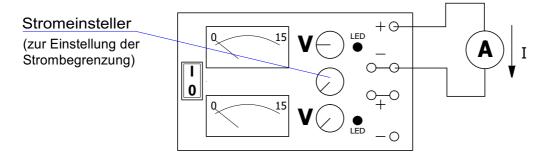

Ermitteln Sie die Messwerte bei der angegebenen Zeigerstellung und den in der Tabelle vorgegebenen Messbereichen. (Eingestellter Messbereich entspricht dem Skalenendwert!)



Mess- bereich	1A-	10µA-	100mA-	10A-
Mess- wert				

ARBEITSAUFTRAG 3:

Lesen Sie im jeweils angegebenen Messbereich den angezeigten Messwert ab.


10mA-; Messwert: Messbereich:

MESSAUFGABE: (Einstellung der Strombegrenzung):

Der Spannungskonstanter ist mit einer einstellbaren elektronischen Strombegrenzung ausgestattet. Nur darum ist es möglich, das Strommessinstrument nach der folgenden Anweisung parallel zur Spannungsquelle zu betreiben!

Einstellungsbeispiel: Strombegrenzung 100mA:

1. Spannungskonstanter ausgeschaltet

- Stromeinsteller am linken Anschlag
- Oberer Spannungseinsteller etwas aufgedreht (siehe Messschaltung)

2. Spannungskonstanter eingeschaltet

- beide LED leuchten, Strommessinstrument zeigt I = 0A
- Stromeinsteller langsam aufdrehen
- Untere LED verlischt, Anzeige des Strommessinstruments auf 100mA einstellen.
- 3. Strommessinstrument abklemmen und gewünschte Gleichspannung einstellen.

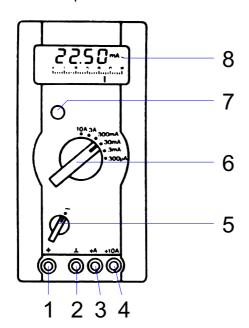
Hein-Moeller-Schule

○SZ Energietechnik II

G 2.1

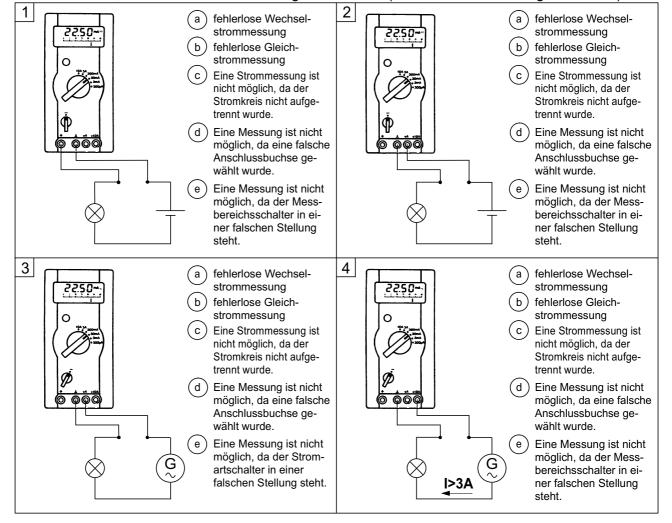
STROMMESSUNG

Umgang m. d. Vielfachmessinstrument

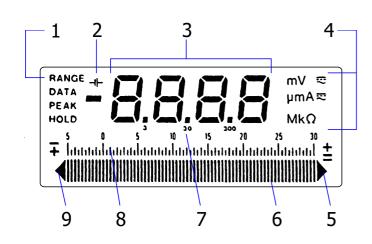

Name:

Blatt-Nr. Klasse:
Datum:

ARBEITSAUFTRAG 4:

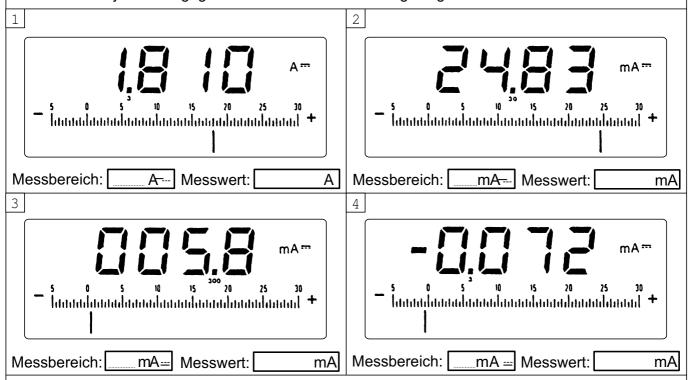

Fachbereich-Grundlagen

Kennzeichnen Sie die Bedienungselemente und Anschlüsse des Messinstrumentes durch das Zuordnen der entsprechenden Ziffern in der abgebildete Tabelle:


Ziffer	Bedienungselemente und Anschlüsse	
	LCD-Anzeige	
	Anschlussbuchse⊥ für alle	
	Messbereiche	
	Anschlussbuchse + 1000V für	
	alle Spannungs- und Wider-	
	standsmessungen	
	Anschlussbuchse für Strom-	
	messung außer 10A	
	Anschlussbuchse nur für den	
	10A-Messbereich	
	EIN-/AUS-Schalter und	
	Stromartschalter	
	Messbereichsschalter	
	Manuelle Bereichswahl	

Kreuzen Sie an, wie das Messinstrument geschaltet ist. (Jeweils nur eine richtige Antwort!)

ARBEITSAUFTRAG 5:


Kennzeichnen Sie die Anzeigenelemente der LCD-Anzeige durch das Zuordnen der entsprechenden Ziffern in der abgebildeten Tabelle:

Ziffer	Anzeigenelemente		
	Digitalanzeige		
	Anzeige von Messgröße		
	und Spannungs-/Stromart		
	Anzeige des gewählten		
	Messbereiches		
	Anzeige bei Messbereichs-		
	überschreitung		
	Skala für Analoganzeige		
	Zeiger für Analoganzeige		
	Anzeige bei Überschreitung		
	des negativen Analoganzeige-		
	bereiches		
	Anzeige der Funktion		
	RANGE - HOLD		
	Batterieindikator		

ARBEITSAUFTRAG 6:

Lesen Sie im jeweils angegebenen Messbereich den angezeigten Messwert ab.

MESSAUFGABE:

Der Einsatzpunkt der Strombegrenzung der oberen Laborgleichspannungsquelle soll mit dem der unteren verglichen werden.

- 1. Stellen Sie mit Hilfe der oberen Spannungsquelle eine Strombegrenzung von 100mA ein.
- 2. Messen Sie an der unteren Spannungsquelle den Wert der Strombegrenzung nach.

(Achtung: Beide Spannungseinsteller müssen etwas aufgedreht sein.)

	Obere Spannungsquelle	Untere Spannungsquelle
Strombegrenzung in mA	100	
Abweichung von 100% in mA	0	