Hein-Moeller-Schule

○SZ Energietechnik II

Fachbereich-Grundlagen

G 12.1

Spannugsquelle mit Lastwiderstand U_{KL} , I_L , P_L , $\eta = f(R_L)$

Name:	
Blatt-Nr.	Klasse:
1/1	Datum:

PROBLEM:

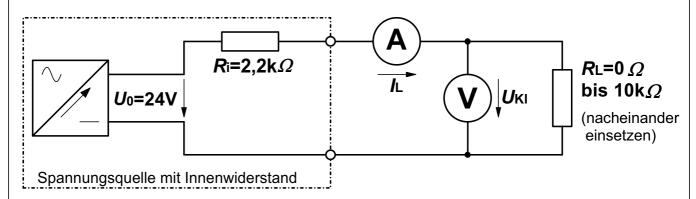
Der Einfluß des Lastwiderstandes R_L an einer Spannungsquelle mit Innenwiderstand auf die Klemmenspannung U_{KL} , den Strom I_L und die abgegebene Leistung P_L soll untersucht werden.

BAUTEILE UND GERÄTE:

Widerstände: $1 \times 220\Omega$ $1 \times 3,3k\Omega$

 $\begin{array}{ll} 1 \times 680 \varOmega & 1 \times 4.7 k \varOmega \\ 2 \times 1 k \varOmega & 1 \times 6.8 k \varOmega \\ 1 \times 2.2 k \varOmega & 1 \times 10 k \varOmega \end{array}$

2 x Spannungskonstanter mit Strombegrenzung


2 x Vielfachmessinstrument (analog + digital)

1 x Universalsteckbrett

ACHTUNG:

Strombegrenzung: 80mA

MESSSCHALTUNG:

MESSWERTE:

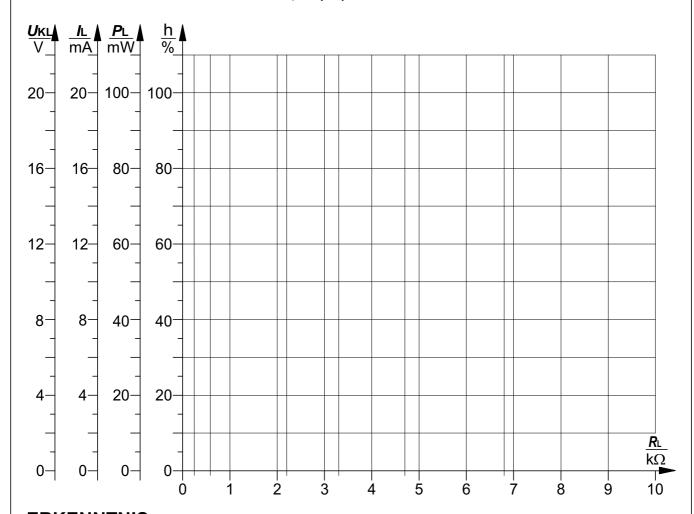
nacheinander einsetzen	$ extcolor{R}$ L in k $arOmega$	0 Kurzschluss	0,22	0,68	1	2,2	3,3	4,7	6,8	10
messen	<i>U</i> ĸ∟ in V									
	/ ∟ in mA									
rechnen	P ∟ in mW									
	P i in mW									
	η in %									

Rechenhilfen: $PL = UKL \cdot IL$

$$P_i = I_{L^2} \cdot R_i$$

$$\eta = \frac{P_{\rm L}}{P_{\rm L} + P_{\rm i}} \cdot 100\%$$

AUSWERTUNG:


Übertragen Sie die ermittelten Mess- und Rechenwerte in das vorbereitete Diagramm, in dem Sie die folgenden Kennlinien in Abhängigkeit vom Lastwiderstand R∟ einzeichnen :

Kennlinie der Klemmenspannung : $U_{KL} = f(R_L)$

Kennlinie des Laststromes : $I_L = f(R_L)$

Kennlinie der Ausgangsleistung : $P_L = f(R_L)$

Kennlinie des Wirkungsgrades : $\eta = f(RL)$

ERKENNTNIS:

$R_{\rm i}$ und $R_{\rm i}$ <	$R_{\rm l} >$	Rereiche /	die B	Cennliniendiagramm	Ke	im k د	Sie	Cennzeichnen	I Ke	1
-------------------------------	---------------	------------	-------	--------------------	----	--------	-----	--------------	------	---

2. Welche Voraussetzung muß erfüllt werden, damit die Spannungsquelle ihre maximale Leistung abgeben kann ? (Tip : Vergleichen Sie *R*∟ mit *R*i !)

3. Wie groß ist bei maximal abgegebener Leistung der Wirkungsgrad ?

4. In welchem Bereich ($R_L << R_i$, $R_L = R_i$ oder $R_L >> R_i$) müsste eine Spannungsquelle (Niederspannungstransformator) für das 230V-Netz betrieben werden ?
