Hein - Moeller - Schule SE Energietechnik II

G 12.0 SPANNUNGSQUELLE MIT INNENWIDERSTAND

Name:	
Blatt-Nr.	Klasse:
1/1	Datum:

Fachbereich-Grundlagen

PROBLEM:

An unterschiedlich dimensionierten Spannungsquellen soll bei steigender Belastung die Klemmenspannung und die Ausgangsleistung untersucht werden.

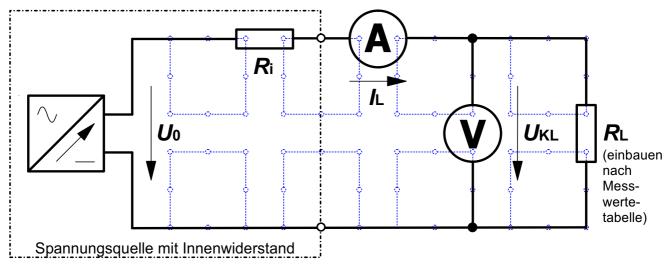
BAUTEILE UND GERÄTE:

Widerstände: 1 x $10\Omega/5W$ 1 x 100Ω

 $2 \times 24\Omega/5W$ $1 \times 220\Omega$

1 x 48Ω/5W

1 x Spannungskonstanter mit Strombegrenzung

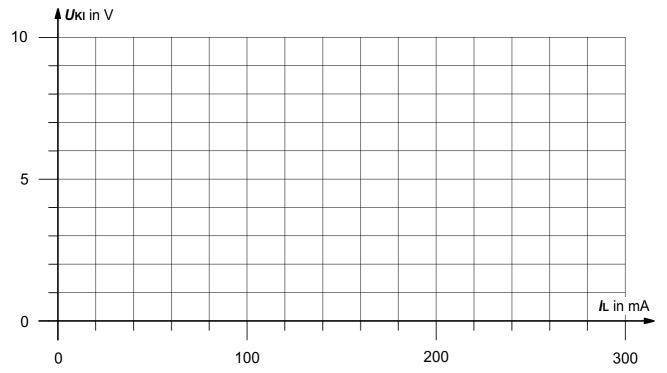

2 x Vielfachmessinstrument (analog + digital)

1 x Universalsteckbrett

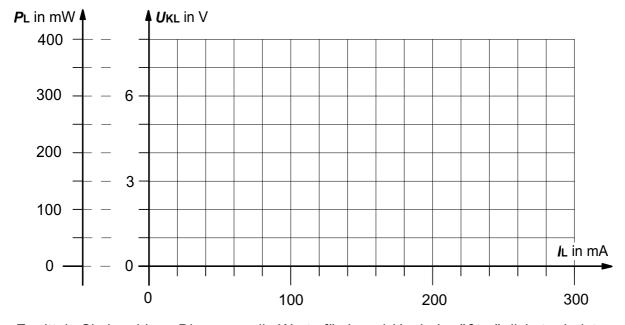
ACHTUNG:

Strombegrenzung: 350 mA

MESSSCHALTUNGSVORSCHLAG:


MESSWERTE:

Kennlinie	$U_{KL} = f(I_L)$; $P_L = f(I_L)$		$= f(I \sqcup I)$	$U_{KL} = f(I_{L})$		$U_{KL} = f(I_{L})$	
für <i>U</i> 0 und <i>R</i> i	6V und 24 Ω 10V und 24 Ω		10V und 10Ω				
ermittelt durch	mes	messen rechne		messen		mes	sen
R L in Ω	<i>I</i> ∟ in mA	<i>U</i> ĸ∟ in V	P ∟ in mW	<i>I</i> ∟ in mA	<i>U</i> ĸ∟ in V	<i>I</i> ∟ in mA	<i>U</i> ĸ∟ in V
Leerlauf							
220							
100							
48							
24							
10							
Kurzschluss							


[Zur Erinnerung: $U_{KI} = f(I_L)$ - lies: U_{KI} ist eine Funktion von I_L - bedeutet, daß die Klemmenspannung vom Laststrom abhängig ist.]

AUSWERTUNG:

1. Kennliniendiagramm: Abbildung von *UKI=f(IL)* aller drei Messreihen.

- 2. Kennzeichnen Sie die Kennlinien mit der Größe des jeweiligen Innenwiderstandes Ri.
- **3.** Überlegen Sie: Wie müsste die Kennlinie einer Konstantspannungsquelle (z.B. unseres Labornetzgerätes) bei 10V und 6V verlaufen? Zeichnen Sie diese Kennlinie gestrichelt ein!
- **4. Kennliniendiagramm:** Abbildung von $U_{Kl}=f(I_L)$ und $P_L=f(I_L)$ bei $U_0=6V$ und $R_i=24\Omega$.

5. Ermitteln Sie im obigen Diagramm die Werte für I_L und U_{KL} bei größtmöglichster Leistungsabgabe der Spannungsquelle und berechnen Sie denzugehörigen Lastwiderstand:

$$R_L = \frac{U_{KL}}{I_L} = \frac{U_{KL}}{I_L}$$

6. Kennzeichnen Sie die richtige Lösung:	☐ <i>R</i> i < <i>R</i> L	<i>R</i> i = <i>R</i> L	☐ R i > R l
---	---------------------------	-------------------------	---------------------------

Das Verhältnis **R**i / **R**L = ____ nennt man ____ .