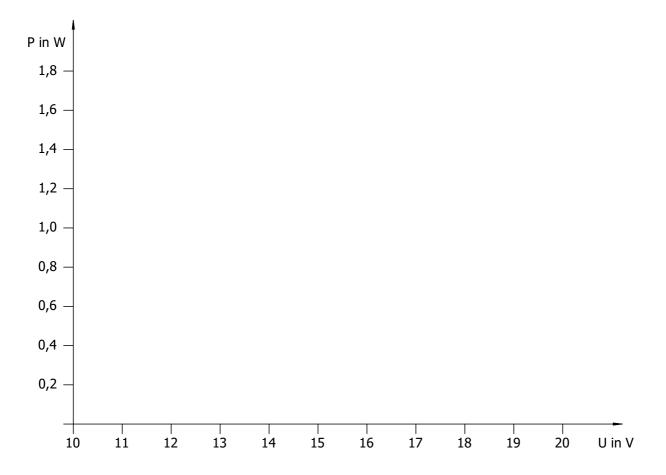

E3.2 - Stabilisierung mit Längstransistor

Name:



	U in V	10	12	13	15	18	20
messen	U _{ref} in V						
	I _E in mA						
	U _L in V						
berechnen	U _{CE} = U - U _L in V						
	$P_{V1} \approx U_{CE} \cdot I_{E}$ in mW						
	$P_{ges} \approx U \cdot I_{E}$ in W						

Die Ausgangsspannung $U_{\scriptscriptstyle L}$ ist weitgehend stabil ab einer Eingangsspannung von:

Berechnen Sie den Strom und die Verlustleistungen der Z-Dioden!

$$I_Z =$$

Tragen Sie die Kurven für die Gesamtleistung $P_{\text{ges}} = f(U)$ und $P_{\text{vi}} = f(U)$ des Transistors in obiges Koordinatensystem ein.

Der Abstand der beiden Kurven ist die Leistung der Lampe. Diese Leistung bleibt etwa konstant ab einer Betriebsspannung von:

Wenn die Eingangsspannung auf 25 V erhöht wird, ist die Zerstörung eines Bauteils die Folge. Welches Bauteil wird dann zerstört?

Weshalb wurde dieses Bauteil zerstört?

Aus den Messwerten wird erkennbar, dass bei 20 V Eingangsspannung die Stabilisierungsschaltung eine beträchtliche Leistung in Wärme umsetzen muß, damit die Lampe nicht überlastet wird. Um welchen Faktor ist die Verlustleistung des Transistors größer, als die der Dioden?